AFRL-RI-RS-TR-2012-196

MONTAGE: A METHODOLOGY FOR DESIGNING COMPOSABLE
END-TO-END SECURE DISTRIBUTED SYSTEMS

INTERNATIONAL BUSINESS MACHINES CORPORATION
AUGUST 2012
FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2012-196 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

IS1 IS/
PATRICK HURLEY WARREN H. DEBANY, JR.
Work Unit Manager Technical Advisor, Information

Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE e o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
AUG 2012 FINAL TECHNICAL REPORT MAR 2008 — MAR 2012

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

MONTAGE: A Methodology for Designing Composable End-to- FA8750-08-2-0091

End Secure Distributed Systems RTINS

N/A

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Suresh Chari DHS3
5e. TASK NUMBER
IB
5f. WORK UNIT NUMBER
M1
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
International Business Machines Corporation REPORT NUMBER
Thomas J. Watson Research Center
1101 Kitchawan Road N/A
Yorktown Heights NY 10598
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/RI
Air Force Research Laboratory/RIGA
525 Brooks Road 11. SPONSORING/MONITORING
Rome NY 13441-4505 AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-196

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes the Montage project, a principled approach to build secure distributed systems which
remain secure when composed with other systems. This is an application of the Universal Composability
Framework, which has been previously applied successfully to design cryptographic protocols, to the problem
of designing software systems. This report describes how the framework can to be adapted to apply to
software systems. Further it describes the successful application of this new framework to diverse applications
including the design of safe subsets of the POSIX file system interface, the design of secure virtualization
primitives and the analysis of web protocols. We also describe an attempt to automate the use of this
framework by automatically generating proofs of equivalence required in application of this framework. Our
results show that it is feasible to design large composably secure software systems using this framework.

15. SUBJECT TERMS
Secure systems, provable security, composability, reusable secure components

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF J18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES PATRICK HURLEY
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPONE NUMBER (Include area code)
U U U SAR 202 | A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Abstract

This report describes the Montage project whose goal is to develop methodologies for
the design of the secure composable systems. This project aims to extend the Univer-
sally Composable Security Framework [Can], a security—via—composition methodology
used extensively for designing secure cryptographic protocols, and apply it to the design
of more realistic and practical systems. This report describes the successful application
of the framework to the design of a number of different software systems as well as the
results of our attempts to automate the application of this framework.

First, we adapt the UC Framework by establishing new conventions for modeling
process management and scheduling and use this to guarantee basic integrity properties
of a POSIX-like filesystem.. Our main contribution is a very simple filesystem specifi-
cation model, called SimpF'S, that captures many integrity concerns in contemporary
filesystems, together with an implementation over existing POSIX filesystems and a
proof that the implementation realizes the specification. The composability proper-
ties of our analysis imply that any software system that uses our implementation over
POSIX behaves essentially the same as if it were using the simple, idealized specifica-
tion system. This equivalence required the development of a new filesystem primitive
such as safe-open which is a drop-in replacement of the POSIX open. Experiments
on several UNIX variants suggest that this solution can be deployed in a portable way
without breaking existing systems, and that it is effective against a whole class of path-
name resolution attacks. This evaluation revealed a number of latent vulnerabilities
in components such as the CUPS daemon, Fedora Core init scripts, Tomcat servers as
well as MySQL and XAMPP servers, all of which can be corrected using safe-open.

Another application of UC is to secure virtualization primitives: We propose an
intuitive model of isolation, equivalent to executing on physically separate hardware,
and derive practical requirements for hypervisors on shared hardware to achieve such
isolation. We use UC to prove that these requirements are sufficient for isolation.
Further, we explore how commodity virtualization platforms can realize the isolation
requirements we have identified. We believe that basing the notion of isolation on a
provably secure models such as UC will be a significant step towards comprehensive
formal models for isolation.

A key thrust of the Montage project has been to make the task of writing the formal
proofs of equivalence needed more practical. To this end we undertook a very ambitious
effort to achieve automatable proofs of security in the UC framework. First we note
that the general problem is undecidable as the problem of automating UC proofs is
identical to deciding if two programs are the same. We looked at restrictions on the
language used to describe the real and ideal systems as a way of ensuring automation of
proofs of equivalence. We started with really simple straight line programs with which
we can demonstrate automatability and then gradually expanded the expressive power
of the language classes: In particular we consider language classes which are inspired
by formulations of standard cryptographic primitives. In considering these language
classes, we have obtained both negative and positive results.

We believe that the results of this project clearly demonstrate that it is indeed
feasible to base the design of composably secure large practical systems on formal
frameworks such as Universal Composability.

Contents

1

Summary
1.1 Key Accomplishments

Introduction

2.1 The Universal Composability Framework
2.2 Systems targeted by this methodology
2.3 Automating Proofs of Equivalence

Methods, Assumptions and Procedures

3.1 Overview of the UC methodology
3.2 Assumptions
3.3 Procedures.

Results and Discussion

Composable Analysis of Operating System Services
5.1 Related Work
5.2 Conventions for Software systems 0L
5.3 SiMPFS: A Simple Idealized File-System
5.3.1 A formal model of SIMPFS
5.4 Implementing SIMPF'S over POSIX
5.4.1 Concepts and Properties of POSIX
5.4.2 The safeDirOpen procedure
5.4.3 Implementing the simpfs commands
5.4.4 Consistency properties of the implementation
5.4.5 Rationale and Discussion
5.4.5.1 Privilege-escalation attacks on setgid programs.
5.4.5.2 An attack on open-then-read programs
5.4.5.3 Our treatment of symbolic links
5.4.5.4 Using the sticky bit
5.5 Proof of Security
5.5.1 Useful Concepts
5.5.2 The Simulator
5.5.3 Proof of correctness L
5.6 Summary . .o oL

Implementation of a safe Filesystem primitive and its analysis
6.1 Related Work

—

© o 1 O

10
10
11
12

13

14
15
15
16
17
21
22
24
24
26
27
27
28
29
29
29
31
32
33
38

39

6.2 Names, Manipulators, and Safe-Open 43
6.2.1 Names and Their Manipulators 43
6.2.2 The Safe-Open Procedure 44

6.3 Our Security Guarantee 46
6.3.1 Using the Security Guarantee to Thwart Privilege Escalation 47
6.3.2 Dynamic Permissions 0oL 48

6.4 Implementing safe-open for POSIX Filesystems 50
6.4.1 Race conditions 50
6.4.2 Thread safety 51
6.4.3 Read permissions on directories 53
6.4.4 Opening files without side effects 53
6.4.5 Implementing safe-create, safe-unlink, and other primitives . . . 54

6.5 Experimental validation 00000000 54
6.5.1 Testing apparatus 54
6.5.2 Measurements of UNIX systems 95
6.5.3 Latent vulnerabilitieso 56
6.5.4 Policy violationso 57
6.5.5 A web-server application oL 58
6.5.6 Conclusions 58

6.6 Variations and Extensionso o8
6.6.1 A more permissive safe-open 58
6.6.2 An alternative safe-open using extended attributes 59
6.6.3 Group permissions 60

6.7 Relative pathnames 60

6.8 User-level implementation, 61

6.9 Summary 63

IsoVisor:Secure Virtualization 64

7.1 Related Work 66

7.2 Threat model 68
7.2.1 Problem Statement 68
7.2.2 Trust Assumptions 68
7.2.3 Attacker Model 68
7.2.4 Physical-channel exclusions, 69

7.3 Requirements for Isolation L. 69
7.3.1 Isolation 69
7.3.2 Platform Model 69

7.3.2.1 Processing Element 69
7.3.2.2 Interface Element 0L 70

i

7.3.2.3 Memory 70

7.3.2.4 Global Clock 70

7.3.3 Platform Interface for Virtual Machines 70
7.3.4 Deriving Requirements for Isolation 71
7.3.4.1 Interface Call Result 72

7.3.4.2 FError Signals 72

7.3.4.3 Interface Call Latency 72

7.3.4.4 Serialization of Interface Calls 73

7.3.5 Our Condition for Isolation 73

7.4 Proof of Sufficiency 74
7.4.1 Isolation in the UC Framework 74

7.5 Formal Model of Conf Separation 7
7.5.1 Deterministic Finite-State Models of Resource Arbiters 7
7.5.2 Common Resource-Arbitration Policies 78
7.5.2.1 Priority-based resource arbiter 78

7.5.2.2 First-in first-out (FIFO) resource arbiter 79

7.5.2.3 Time-division multiplexing (TDM) resource arbiter 79

7.5.3 Conf Separation for Deterministic Finite-State Models 79
7.5.4 Non-Interfering Resource Arbiters 82
7.5.5 Probabilistic Models of Resource Arbiters 83
7.5.5.1 Example of leakage-rate computation 83

7.6 Formal Model of Loc Separation 84
7.6.1 Static Partitions 84
7.6.1.1 Operational Model of Processing Elements 85

7.6.1.2 Requirements for Static Partitions 86

7.6.2 Modification of Partitions 87

7.7 DISCusSion e 87
7.8 SUMMATY 88
Composition Failures in Protocols 89
8.1 Plaintext injection in multiple legacy protocol implementations 89
8.1.1 Problem overview and impact 89
8.1.2 The STARTTLS feature 91
8.1.3 Demonstration of the problem for SMTP 91
8.1.4 Switching world views oL 92

8.2 Remediation 92
8.3 Comparison with other vulnerabilities 93
8.4 Summary 94

1l

9 Modeling of OAuth 2.0 Web Security Protocol

9.1
9.2
9.3

9.4
9.5
9.6

Outline
Security Analysis Synopsis
The Secure Channel Ideal Functionality

Conventions for Defining Ideal Functionalities

The OAuth Ideal Functionality
Implementation of Ideal Functionality Foypg* - - - -+« -« v v o oo o
SUMMATY o o o

10 Proof Automation
10.1 Problem Statement

10.1.1 Universal Composability
10.1.2 Proof Automation Problem

10.1.2.1 Finiteness Argument.
10.1.2.2 Call Sequence Enumeration.
10.1.2.3 Equivalence Checking.

10.1.3 Motivating Example.

10.2 Overview of Results
10.3 Restriction to Language Classes
10.4 Decision Procedures

10.4.1 Pseudo-Linear Functions

10.4.1.1 Example of Pseudo-Linear Functions
10.4.1.2 A Basis for Pseudo-Linear Functions
10.4.1.3 Interpolation Property for Pseudo-Linear Functions
10.4.1.4 The Completeness Theorem for Pseudo-Linear Functions . .

10.4.2 Tterated Composition of Pseudo-Linear Functions

10.4.2.1 Example of Iterated Pseudo-Linear functions
10.4.2.2 Theorem for Iterated Pseudo-Linear Functions
10.4.2.3 Allowing a Few Constants

10.4.3 Randomized Pseudo-Linear Functions

10.4.3.1 Interpolation Property for SRPL Functions
10.4.3.2 The Completeness Theorem for SRPL Functions

10.5 Proof Automation in the Universally Composable model

10.5.1 Extension with Persistent States and Uninterpreted Functions

10.5.1.1 Key ideas for encryption and signatures.

10.5.2 Example of Automation L.

10.6 Undecidable cases

10.6.1 Analysis

10.6.1.1 Ideal Functionality for the Undecidable Language

v

95
95
95
97
99
100
103
108

113
113
113
114
116
116
116
118
121
122
125
126
128
131
134
135
136
137
138
143
144
145
147
155
157
158

10.7 Summary and Outlook 172

11 Conclusions 175
11.1 Key Areas of Application 175
11.2 Papers and Publications oo 176
11.3 Contributions to Open Source 176

12 References 178

List of Figures

© 00 1 O U = W N

R R KRR R KR — & /2 s
T O R W N RO ®©Oo=1O Ul Wi — O

SIMPFE'S commands. 18
Other SIMPFS commands. 19
Real and ideal worlds for user-level implementation of simpfs 30
Real and ideal worlds for kernel-level implementation of simpfs 30
The top-level safe_open and a utility function open_action func. 51
The safe_lookup recursive call.00 52
In-process monitor architecture. Lo 62
Correspondence between real-world and ideal-world execution 65
Defining Isolation in the UC Framework 75
Logical view of client-server application 90
The Secure Channels functionality, Fsc 98
The SSL functionality, Fsst, - - - -« « « o o o o 98
A functionality for delegation with explicit key exchange 102
OAuth v2 Authorization Grant Flow 104
OAuth v2 Authorization Grant Flow 108
OAuth v2 Authorization Grant Flow in Email Settings 109
OAuth v2 Authorization Grant Flow in Bulletin Board Settings 110
Example flow of the Ideal World Implementation 111
Example flow of the Real World Realization of Fqgyrp - - - - - - - o - - . 112
Proof automation: technique 117
Structure of a general decision procedure 118
The password-based key-exchange functionality Fowke - - - - - -« « o . . . 119
Protocol for Password-based Key Exchange using Ideal Cipher. 120
Ideal Functionality for Signatures 159
Ideal Functionality for Public-Key Encryption 159
The password-based key-exchange functionality Fowke -« - -« . « o 160
Protocol for Password-based Key Exchange using Ideal Cipher. 162

vi

List of Tables

1 Products and Services affected by the STARTTLS vulnerability 90
2 Programs in the Language L¥®. 156
3 Lp: Language definition for the undecidable system 164

vii

1 Summary

The overall goal of the Montage project was the development of a methodology for the design
of the secure composable systems. This project aims to extend the Universally Composable
Security Framework (UC) [Can], a security—via—composition methodology used extensively
for designing secure cryptographic protocols, and apply it to the design of more practical
and realistic software systems.

The key objectives of the project were to find appropriate large software systems to
model using this framework. In particular, two such systems which were identified as part
of the original proposal were the Postfix mail server and the concept of a Trusted Virtual
Domains (TVD). Postfix is a very popular mailer daemon which is a drop in replacement for
sendmail. It is designed with security in mind and has a number of carefully designed features
to avoid known pitfalls. We have successfully applied the UC framework to model some of
these features of Postfix including the mechanisms by which it handles files in world-writable
directories. This has led to a very general primitive as described in the accomplishments.
We have also extended the UC Framework to model secure virtualization primitives. This
is a key building block to composably building secure and trusted virtual domains which
co-exist on the same physical platforms.

Another key objective of the Montage project was to make the application of the method-
ology practical by outlining methodologies where the complex proofs of equivalence required
to apply this methodology could be automated. We undertook a fundamental study of which
proofs in the UC Framework could be automated and obtained foundational results on the
subsets of the specification language which yield automatable proofs. An investigation into
these methods has also yielded more efficient cryptographic primitives. These results are
detailed in the accomplishments.

Overall, we have achieved most if not all of the ambitious objectives that we set out
for the Montage project. We showed many convincing examples in the design of secure
software and systems that the UC methodology can be successfully applied to the design of
large software systems. We have shown that a principled approach yield practical primitives
which are designed to be composable in arbitrary environments. Our safe file system open
primitive can be a drop in replacement for the usual POSIX open and using that prevents
hundreds of vulnerabilities reported in the last few years. We have used this methodology to
identify potential vulnerabilities in many open source products and transfered our technology
to these software modules. The work on methodologies to automate proofs is foundational
and will lead to theorem-prover based automation software for automation of proofs and
lead to broader applications of the UC Framework.

1.1 Key Accomplishments

The following are some of the key accomplishments of the Montage project. The details of
these and other contributions of the project will be described in the rest of this technical
report.

Approved for Public Release; Distribution Unlimited.
1

e Composable Security Analysis of Operating System Services While the UC
Framework has been applied extensively to the design and analysis of cryptographicpro-
tocols, a key advance we have made is to adapt the framework so it can be applied
to the design of software systems. In particular, we looked at abstracting some of the
security features of the Postfix mail server. As a test case, we modeled how Postfix
safely uses the POSIX filesystem interface, designed an ideal safe filesystem interface
and showed its equivalence to a realization over POSIX. This demonstrates the suc-
cessful application of the UC framework to a large practical system i.e. the POSIX
filesystem interface. The UC framework, which is explicitly designed for composabil-
ity, gives us the following strong security guarantee: If all the uncorrupted processes in
the system use our filesystem interface then, irrespective of what corrupted process do
using the entire POSIX interface, good processes are guaranteed to be secure against a
class of privilege escalation attacks. The compositionality theorem in the UC Frame-
work guarantees that this property is retained irrespective of what larger program the
processes are implementing. To the best of our knowledge this is one of the few cases
of successfully modeling a large interface such as POSIX. We conclude from this expe-
rience that the UC Framework can be applied to model practical software systems. A
technical paper resulting from this effort was published at the Applied Cryptography
and Network Security conference in June 2011.

e A secure filesystem primitive One of the results of the formal modeling of the safe
use of POSIX was the development of a practical filesystem primitive which can be
used securely in any software system. We developed primitives for a POSIX environ-
ment, providing assurance that files in safe directories (such as /etc/passwd) cannot be
opened by looking up a file by an unsafe pathname (such as a pathname that resolves
through a symbolic link in a world-writable directory). In todays UNIX systems, solu-
tions to this problem are typically built into (some) applications and use application
specific knowledge about (un)safety of certain directories. In contrast, our solution
can be implemented in the filesystem itself (or a library on top of it), thus providing
protection to all applications. Our solution is built around the concept of pathname
manipulators, which are roughly the users that can influence the result of a file lookup
operation. For each user, we distinguish unsafe pathnames from safe pathnames ac-
cording to whether or not the pathname has any manipulators other than that user or
root. We propose a safe-open procedure that keeps track of the safety of the current
pathname as it resolves it, and that takes extra precautions while opening files with
unsafe pathnames. We prove that our solution can prevent a common class of filename-
based privilege escalation attacks, and describe our implementation of the safe-open
procedure as a library function over the POSIX filesystem interface. We tested our
implementation on several UNIX variants to evaluate its implications for systems and
applications. Our experiments suggest that this solution can be deployed in a portable
way without breaking existing systems, and that it is effective against this class of
pathname resolution attacks. This work resulted in a publication which appeared in
the Network and Distributed systems security conference in Feb 2010.

Approved for Public Release; Distribution Unlimited.
2

e Technology transfer to Open Source Software As mentioned above, we have
validated the applicability of our filesystem primitive against all processes in common
Linux variants. In the process of evaluation we allowed all accesses but flagged what
we deemed as unsafe accesses which our safe-open primitive would have disallowed.
From this evaluation we had identified a number of latent vulnerabilities in a number of
important software packages such as the CUPS(Common Unix Print Services) daemon,
Fedora Core init scripts, important servers such as Tomcat, open source packages such
as MySQL and the XAMPP daemon as well as other software packages. In each case
we filed the appropriate vulnerability report as well as highlighted how our approach
using safe-open could uniformly solve this problem. This has been successfully adopted
by a number of open source software including the CUPS daemon and Fedora Core
init scripts.

e Secure Virtualization Primitives Another key area where we have applied the
UC methodology is the domain of secure virtualization. As virtualization becomes
increasingly popular in both cloud and personal computing, there is an acute need for
strong isolation between virtual machines. Yet such isolation is not achieved in cur-
rent implementations and lacks a formal model sufficiently expressive for contemporary
commodity systems. On one hand existing virtualization platforms have been shown to
have significant side channels via shared resources (CPUs, caches, disks, etc.). On the
other hand well-established security models of isolation are developed around abstract
models of computation and do not easily translate to the complex hardware architec-
tures of today. We propose an intuitive model of isolation, equivalent to executing on
physically separate hardware, and derive five practical requirements for hypervisors on
shared hardware to achieve such isolation. We use the Universal Composability (UC)
framework to prove that these requirements are sufficient for isolation. Further, we
explore how commodity virtualization platforms can realize the isolation requirements
we have identified. We relate timing side channels to scheduling policies and show that
only a small, well-defined subclass of schedulers eliminate timing-based leakage. An
implementor that uses such schedulers is guaranteed to have a hypervisor free of timing
side channels. We also show how one can trade scheduling optimality for limited isola-
tion by quantifying the rate of leakage in probabilistic schedulers. We analyze the root
cause of explicit information flows and demonstrate that access control (via address
translation or access matrices) and correct operation of execution context save and
restore operations is sufficient to prevent explicit information flows. Since our formal
models focus on a proof-driven methodology to realize isolation in commodity virtu-
alization platforms, we believe that ours is a significant step towards comprehensive
formal models for isolation.

e Proofs of security of Web Security Protocols Another broad area where we have
tried to apply the UC Framework is that of web security protocols. These are good
examples of protocols which are mainly cryptographic in nature but include enough
systems and web artifacts to make it a complex application of the UC Framework.

Approved for Public Release; Distribution Unlimited.
3

We focused on modeling OAuth, the popular web security protocol for delegation. We
first looked at OAuthl.0 and wrote a formal model using the UC framework. A bug
which was discovered in the protocol, falls out naturally from our formal model. Since
then, IETF is standardizing the next version of the protocol, OAuth 2.0. To provide
guarantees of correctness, we have written formal models of this protocol. From our
analysis, we have derived recommendations for implementation which are necessary for
security.

Proof Automation Methodologies Another key effort in the Montage project has
been to make the task of writing the formal proofs of equivalence needed more practical.
To this end we undertook a very ambitious effort to achieve automatable proofs of
security in the UC framework. First we note that the general problem is undecidable.
This is because at some level the problem of automating UC proofs is identical to
deciding if two programs are the same and that is clearly undecidable. Thus our
approach is to look at restrictions where we can automate the proofs of equivalence.
These restrictions on the real and ideal functionalities are define by restricting the
languages which we can write the real and ideal systems. Thus the restricted problem
is to automate the equivalence of real and ideal systems where both the systems are
described in a restricted language class. We start with really simple straight line
programs with which we can demonstrate automatability. Then we gradually expand
the expressive power of the language classes: In particular we consider language classes
which are inspired by formulations of standard cryptographic primitives. In considering
these language classes, we have obtained both negative and positive results.

1. Negative results: If both the ideal and real systems are allowed to be arbi-
trary Turing Machines, then, as noted earlier, the problem becomes as hard as
deciding program equivalence, which is undecidable. Further, we showed that
even under somewhat more restricted scenarios the problem remains undecid-
able. For instance if we consider programs which are allowed unbounded table
lookup/storage operations (not random access, but just storing and detecting
whether some string is there in the table) then the problem is undecidable even
when the program is otherwise restricted such as when there are no arithmetic
operations, loops in subroutines or random number generation.

2. Positive results: Despite these negative results we show that there are other
restricted languages which we can obtain automation procedures. The restric-
tions for which we have positive results avoiding the undecidable territories and
for which we can demonstrate automation are programs written in a language
that allows environment input/outputs, adversary send/receives, conditional ex-
ecution, random number generation, uninterpreted functions and bounded local
storage. As we demonstrate this is sufficient to model several important crypto-
graphic primitives.

Our work is the first to investigate the automatability for proofs in the UC Framework.

Our work has charted a portion of the boundary between what is provably undecidable

Approved for Public Release; Distribution Unlimited.
4

and provably decidable. The eventual goal is to cover automated analysis of a wide
range of interesting cryptographic protocols. The positive results from our work covers
language classes that are sufficient to cover the description of strong cryptographic
primitives such as public key encryption, digital signatures and password-based key
exchange protocols. However, to cover more complex cryptographic protocols like
OAuth and systems protocols like file systems with safe-open, we need to provide
support for arbitrary serialization of the real protocol execution. A paper describing
results of our proof automation work will be presented at the European Symposium
on Research in Computer Security (ESORICS) in Sep. 2012.

Efficient Cryptographic primitives Arising from this investigation of the automa-
tion of UC proofs, we have investigated efficient password based key exchange protocols.
These protocols are expressible in the limited language for which we have been success-
ful in automating the proofs. We have discovered novel schemes for this primitive both
in the UC model of security as well as other models such as PAK. We have introduced
the notion of relatively-sound non-interactive zero knowledge(NIZK) protocols which
we use as a building block for efficient password based key exchange primitives. As
a corollary we obtain efficient implementations of other cryptographic primitives and
show several efficient implementation of this primitive in the UC models. This investi-
gation of password based key exchange protocols is motivated with finding non-trivial
protocols where we can automate the proofs of the application of the UC framework.
This work will be published in the Public Key Cryptography conference in May 2012.

Approved for Public Release; Distribution Unlimited.
)

2 Introduction

The design of systems with a desired set of security properties and the reasoning that the
system satisfies the security properties is a notoriously difficult task. Formally specifying
the security properties of a system and proving that the system satisfies these formal spec-
ifications is typically unmanageable, for all but the smallest of applications. Contemporary
software systems are complex, consisting of many millions of lines of code, spread across
a myriad of components and sub-components. It is therefore tempting to break a system
into components and reason about the security properties of the smaller components. This
approach too is problematic, however, since in general a composition of secure components
does not directly result in a secure system: there is usually no guarantee that the security
properties of individual components are preserved under composition. Often, a component
will be used in environments different from what its designers initially had in mind, along-
side other components that perhaps did not even exist when the original component was
analyzed, potentially violating some assumptions that were made in the analysis.

Ideally, we would like to analyze the behavior of a component in isolation, and have the
assurance that this behavior remains intact even when that component is embedded in a new
environment. This approach is possible in the mathematically precise realm of cryptography
and cryptographic protocols through several frameworks such as Universal Composability
(UC)[Can01, Can06] and closely related approaches such as Reactive Simulatability[PW00,
BPWO07|. These frameworks are aimed at capturing the security of cryptographic primitives
and protocols, ranging from authentication and key exchange, to public-key encryption and
signatures, zero-knowledge, and more (see [Can06] for many examples.) However, many of
the features of these frameworks appear at first to be specific to the realm of cryptographic
protocols. A natural question is whether the “composable security” approach can be carried
out in a meaningful way outside the limited domain of cryptography. In particular:

Can we obtain meaningful composable security in the context of general software
systems?

The goal of the Montage project is to establish a new methodology for designing secure
systems through (de)composition. Our goal is to identify a set of processes, patterns and
potentially tools to enable the design of composable secure systems. The foundation of our
methodology is the Universally Composable Security framework, which we aim to extend
by introduce new elements in all the software engineering aspects of secure system design:
processes, patterns and tools.

The Universally Composable Security framework allows for specifying security proper-
ties of cryptographic protocols in a clear and concise way and provides tools for asserting
whether a given protocol satisfies the specification. The key result of this framework is a
very effective way for reducing the complexity of security analysis, via a strong security
preserving composition theorem. It thus provides a way for decomposing large systems into
small components, separately analyzing the security properties of each component, and then

Approved for Public Release; Distribution Unlimited.
6

deducing the security properties of the composite system from the security properties of the
components.

The Montage project aims to take the UC methodology, which has proven very useful
in designing secure multiparty cryptographic protocols, and scale it out to apply to more
realistic and complex systems. The main advantage provided by the UC framework is that a
component designed securely in it will retain its desired security features independent of the
higher level system that it is used in. This approach has very quickly become an important
design pattern for secure multiparty cryptographic protocols. We wish to scale this approach
up and extend it to deal with complex (and more complete) systems. The desired outcome
of the Montage project would be to make the UC framework an essential tool in the design
of secure software systems.

First we will describe the UC Framework which is the formal underpinning to the entire
project Then we describe the targeted use cases and the rationale for choosing them.

2.1 The Universal Composability Framework

We briefly describe the relevant aspects of the framework of universally composable (UC)
security. The reader is referred to [Can01] for more details. The framework describes two
probabilistic games: The real world that captures the protocol flows and the capabilities of
an attacker, and the ideal world that captures what we think of as a secure system. The
notion of security asserts that these two worlds are essentially equivalent.

THE REAL-WORLD MODEL. The players in the real-world model are all the entities of
interest in the system (e.g., the nodes in a network, the processes in a software system, etc.),
as well as the adversary A and the environment Z. All these players are modeled as efficient,
probabilistic, message-driven programs (formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants
can utilize in an actual deployment of this component in the real world. In particular,
the capabilities of A should capture all the interfaces that a real-life attacker can utilize in
an attack on the system. (For example, A can typically see and modify network traffic.)
The environment Z is responsible for providing all the inputs to the players and getting
all the outputs back from them. Also, Z is in general allowed to communicate with the
adversary A. (This captures potential interactions where higher-level protocols may leak
things to the adversary, etc.)

THE IDEAL-WORLD MODEL. Security in the UC framework is specified via an “ideal function-
ality” (usually denoted F), which is thought of as a piece of code to be run by a completely
trusted entity in the ideal world. The specification of F codifies the security properties
of the component at hand. Formally, the ideal-world model has the same environment as
the real-world model, but we pretend that there is a completely trusted party (called “the
functionality”), which is performing all the tasks that are required of the protocol. In the
ideal world, participants just give their inputs to the functionality F, which produces the
correct outputs (based on the specification) and hands them back to the participants. F
may interact with an adversary, but only to the extent that the intended security allows.

Approved for Public Release; Distribution Unlimited.
7

(E.g., it can “leak” to the adversary things that should be publicly available, such as public
keys.) Specifying the code of F is typically a non-trivial task. It is important that F satisfies
all the desired security properties, but also that F does not impose unnecessary constraints:
It is only too easy to write a functionality that describes “what we intuitively want”, but is
not realizable by any implementation.Another crucial concern is the simplicity of the func-
tionality JF, since we want F to capture the important security concerns, not the mundane
implementation details.

UC-SECURITY AND THE COMPOSITION THEOREM. An implementation 7 securely re-
alizes an ideal functionality F if no external environment can distinguish between running
the protocol 7 in the real world and interacting with the trusted entity running the ideal
functionality F in the ideal world. That is, for every adversary A in the real world, there
should exist an adversary A’ in the ideal world, such that no environment Z can distinguish
between interacting with A and 7 in the real world and interacting with A" and F in the
ideal world.

The striking feature of the UC framework is its ability to handle composition. Specifically,
the composition theorem from [Can01] asserts the following: Let p be an arbitrary system
that runs in the ideal world and uses (perhaps multiple copies of) the functionality F. Next,
consider the system p’ in the real world, that is the same as p except that in p’ each call to
the ideal functionality F is replaced by executing the implementation 7. Then, if 7 securely
realizes F it is guaranteed that system p’ behaves essentially the same as system p. In
particular, all the security properties of p are inherited by protocol p/. This guarantee is the
basis for the composable security guarantees provided by the UC framework.

2.2 Systems targeted by this methodology

While we expect that frameworks such as Universal Composability (UC) should be applicable
to the design of a wide variety of software systems, we have focused our efforts on the following
specific types of systems which we expect to have the maximum impact.

MODULARLY DESIGNED SOFTWARE SYSTEMS: The best candidates for the UC Framework
are, of course, software systems which are inherently designed as small components with
cleanly defined interfaces between the components. A very good example of such a system is
the Postfix[Ven| mail server. It consists of clearly delineated components which interact in a
well defined way. This is an important test case for the applicability of the UC Framework for
several reasons: it is a complex large system yet it is designed in a modular componentized
manner, it is a noncryptographic system and would therefore be useful in refining the UC
Framework and lastly, its size would give us a way to calibrate the scalability of the frame-
work. Our first results were obtained by taking some of the security features of the Postfix
system such as its careful handling of the filesystem and abstracting it. The extensions of
the UC Framework to support this and the resulting formal models and implementations are
presented in Sections 5 and 6.

TRUSTED VIRTUAL DoOMAINS: Trusted Virtual Domains (TVDs) represent a new model
for IT security by providing explicit infrastructurelevel containment and trust guarantees.

Approved for Public Release; Distribution Unlimited.
8

TVD enables the abstraction of shared physical infrastructure into isolated and contained
virtual domains. TVDs can be thought of as a trusted and isolated distributed infrastructure
which can be built modularly by adding components such as compute, storage, partitioned
applications etc. This view supports the modeling of these systems using a composable
security framework since we don’t want to redo the security analysis every time a new virtual
component is added. In the Montage project, we have studied the application of UC to the
design of secure virtualization primitives. Section 7 describes the application to obtaining
practical requirements on hypervisors which guarantees strong notions of isolation.

WEB SECURITY PRrROTOCOLS: Web Security protocols are great candidates for modeling
with composition frameworks such as UC. First these protocols involve elements such as
browser implementations, infrastructures components such as DNS in addition to core cryp-
tographic primitives. Thus modeling them would require only a slight extensions of the core
framework but would extend it in a manner requiring analysis of software implementations.
Secondly, web security protocols are arbitrarily composed with other protocols. For instance
SSL is used with almost every other protocol to obtain secure variants. Section 8 describes
practical examples of some composition failures that were detected out of the work done in
the Montage project. Section 9 describes our effort to formally model the OAuth2.0 web
security protocol.

2.3 Automating Proofs of Equivalence

Typically, secure software design methodologies such as UC require the user to write down
formal proofs. Security in the UC framework requires the software developer to write a formal
proof of equivalence between the real and ideal worlds. This is typically a fairly complex task
as it requires the analysis of all possible serializations of events in the system of interest. To
alleviate this, one of the key goals of the Montage project was to investigate if it is feasible
to automatically generate the proof of equivalence. If this is feasible, then developers are
much more likely to consider using the rest of the formal machinery. First, we note that the
general problem is undecidable in the strong sense as it requires us to automatically decide
if two programs are equivalent. In Section 10 we describe several positive results arising
from our investigation of special cases where the proofs are amenable to automation. Ours
is the first work to consider the automation of proofs in the UC Framework and the positive
results we obtain are the first step towards more general automation approaches.

Approved for Public Release; Distribution Unlimited.
9

3 Methods, Assumptions and Procedures

This section presents an overview of the methods, assumptions and procedures used in the
Montage project. Since the project aims to demonstrate the feasibility of applying the
Universal Composability Framework to model software components in a number of diverse
areas, we will leave the finer details of the methods, procedures and assumptions for each
application to later sections. Here we present a broad overview which captures the essence
of the methodology.

3.1 Overview of the UC methodology

The overall goal of the Montage project is the development of a principled methodology for
the design of the secure composable systems. In particular, the project aims to extend the
Universally Composable Security Framework [Can], a security—via—composition methodology
used extensively for designing secure cryptographic protocols, to apply it to more complete
and realistic systems.

We have applied this framework to the following diverse application areas to demonstrate
the feasibility of the approach:

e The first application we describe in Sections 5 and 6 is to model the safe use the POSIX
file system interface. The goal of this work is to design a safe subset of the POSIX file
using which we can avoid a large class of attacks due to pathname manipulation.

e Another application of the framework we have developed is that of secure virtualization
primitives. This application is described in Section 7. Here we aim to develop a formal
model of secure isolation of virtualized environments.

e We have also extended the UC Framework to study the security of common protocols
used in web security. Section 8 describes a general class of protocol composition errors
that were discovered in a number of common protocols used in the Internet. Section 9
describes the use of the UC Framework to model the security of the Internet protocol
OAuth which is increasingly becoming popular in modern web applications.

For each of the target system we have identified, broadly speaking, the steps in applying
the Universally Composable security framework to the design and analysis of the target
system are:

e Decompose the specified target system into components,

e Identify the abstract functionality as prescribed by the UC Framework as well as the
high-level design of the implementation,

e Prove the closeness of the high-level design to the abstract functionality and imple-
mentation of the abstract design.

Approved for Public Release; Distribution Unlimited.
10

In all the applications of the UC Framework to realistic systems, we have typically needed an
iterative process where we revisit the componentization, modeling and proof steps multiple
times to ensure the successful application to modeling the system.

By design, we have attempted to apply the framework to very diverse systems from very
different systems. Thus the details of each of these use cases i.e. the specific components
we model, the abstract functionality or the “security specification” for these components
and the proof that our implementation realizes the specification will be described when we
consider each of the above use-cases.

3.2 Assumptions

The UC methodology for designing software systems essentially systematizes the principle
of writing in the specification all the security assumptions we make in the system under test
i.e. anything that is not explicitly stated in the specification will be protected against in the
implementation. For example, for encrypted communication the specification might simply
say that we reveal the length of the message to the adversary. The actual implementation
of encrypted communication must ensure that nothing other than the length is revealed to
the adversary.

Thus writing down precisely the assumptions we make in each target system we inves-
tigate is a very crucial task in applying the UC Framework. There is a delicate balance
between making the specification too coarse, and thus impossible to realize in a practical
system, and making the specification too fine grained which results in all the assumptions
being carried over to the larger system this component is embedded in. In each of the use
cases we have studied there is an iterative process to precisely capture the assumptions to
be written into the specification.

Typically the security assumptions in the specification are written by having an adver-
sary in the ideal world which is then granted powers to intervene and change the order of
execution. For instance, if the specification wanted to capture denial-of-service 7.e. this is
not explicitly prevented in the implementation then the functional calls in the specification
would include a call to the adversary and execution returns only if the adversary returns
control.

The specific assumptions for each of the use cases will be described when we consider
each application. Sections 5 and 6 will describe assumptions on various conditions such as
denial of service and the ability of the adversary to corrupt specific process which guide our
specification. Section 7 describes assumptions such as elementary properties of computer
architectures which are needed to prove our conditions for isolation of virtualized compo-
nents. Section 9 describes assumptions we make on implementations of common Internet
mechanisms such as DNS which are needed to argue about security of the OAuth2 protocol.

Approved for Public Release; Distribution Unlimited.
11

3.3 Procedures

As described in Section 3.1 a key step in the application of the UC Framework is a proof
that the implementation in the real world provably realizes the specification in the idealized
world. This equates to proving that, as seen externally by the environment, any behavior
that is realizable in the real world can be realized in the ideal world and vice-versa. As with
all formal frameworks for secure software design this is often the most difficult task and is
typically what leads to the poor applicability of formal frameworks.

It has been a crucial goal of the Montage project to tackle this problem head on with a
very ambitious program of automating such proofs of equivalence. Section 10 describes our
work on automating proofs of equivalence in the application of the UC Framework. While
the general problem can be shown to be undecidable there are significant subsets for which
we can describe effective procedures to prove equivalence.

Approved for Public Release; Distribution Unlimited.
12

4

Results and Discussion

We have successfully applied the UC Framework to a number of diverse areas covering a wide
variety of practical software systems at all levels including the POSIX file system interface,
hypervisor implementations, as well as application level protocols such as the web security
protocol OAuth2.0. The application of the UC Framework and the specific results obtained
in each of these areas in described in subsequent sections. In particular

Section 5 describes our adaptation of the UC Framework to enable modeling of software
systems. The key results in this section include artifacts to model process management
and other kernel functions within the UC Framework. We use these adaptations to
describe a safe subset of POSIX, using which users are guaranteed to be protected
against a class of filename manipulation attacks. The composability guarantees of the
UC Framework ensure that these security guarantees are maintained irrespective of
what higher level application the process is embedded in.

Section 6 describes the evaluation of an implementation of the safe filesystem primitives
described in Section 5. We show that our primitives can be used as drop in replacements
for standard POSIX primitives and are transparently able to run entire Linux systems
with it. In the process of evaluating these systems, we have identified latent privilege
escalation vulnerabilities in a number of open source software packages.

Section 7 describes our application of the UC Framework to model isolation in com-
modity hypervisor environments. We obtain sufficient conditions for such hypervisors
running on shared hardware to achieve such isolation. Our models for isolation take
into account issues such as timing side channels and other more complex information
flows.

Section 8 describes our investigation of the STARTTLS composition bug which affects
a number of open-source software packages implementing common Internet protocols
such as SMTP, FTP etc. over TLS.

Section 9 describes the application of the UC Framework to model web security pro-
tocols. We formally model the OAuth2.0 protocol for secure delegation and derive
a number of recommendations for implementers which will be necessary for a secure
realization of the protocol.

Section 10 describes our investigation into automation of the proofs of security required
for the application of UC Framework. We have obtained a number of positive and
negative results on proof automation. The general problem is not decidable but for
a number of important subsets we show that it is feasible to automate the proofs of
security.

As described in Section 11 this work has resulted in the publication of several technical
papers as well as contributions to multiple open source packages.

Approved for Public Release; Distribution Unlimited.
13

5 Composable Analysis of Operating System Services

The first target for modeling and design of composably secure components is the Postfix
system. As discussed in Section 2, this is an example of a modularly designed software system
built with security in mind. We want to abstract out some of the key security features of
Postfix. In particular, we look at the safeguards built into Postfix to safely handle files in
the system especially in world writable directories. In this section, our main contribution is
a very simple filesystem specification model, called SIMPF'S, that captures many integrity
concerns in contemporary filesystems, together with an implementation over existing POSIX
filesystems [IEE08] and a proof that the implementation realizes the specification model.

The composability properties of our analysis imply that software systems that use
our implementation over POSIX behave essentially the same as if they were using
the simple, idealized specification system SIMPFES.

This is a very strong security guarantee. In particular, it allows analyzing software sys-
tems without worrying about how the filesystem is implemented, and without worrying about
potential bad interactions between the analyzed system and the filesystem implementation.

Our filesystem model is geared toward ensuring integrity of files and their names, and in
particular preventing filename manipulation attacks. In such attacks, a victim program ex-
pects a particular filename to have certain semantics. (E.g., a mail program may expect the
file /var/mail/root to be the mail file for the super-user.) In the attack, the adversary cre-
ates a link by the same name in the filesystem, pointing to another file (e.g., /var/mail/root
-> /etc/passwd), thereby “tricking” the victim program into accessing an unexpected file.
(In the mail example, such a link may cause a naive mail program to write incoming email
into the system’s password file.) Such attacks were quite common in UNIX systems of old.

Since creating links to files often takes lower permissions than accessing these files, this
form of attack sometimes allows an attacker to leverage the permissions of a privileged victim
program to read or write files that the attacker cannot access on its own.

Our implementation is an abstraction of a safe file handling primitive which is presented
in Section 6. The SIMPES interfaces are designed to tightly bind files with their names:
files can be accessed only via the names they were created with, which means that filename
manipulation attacks are impossible in our model. Our proof implies in particular that it
indeed eliminates these filename manipulation attacks.

SIMPE'S offers a simple interface that captures enough filesystem primitives for applica-
tion developers to build meaningful applications. The simplicity of SIMPF'S is due to its very
narrow interface (only four commands) and the fact that it does not have directories. We
argue that the murky relation between files and their names in plain POSIX systems stem
to a large extent from the fact that pathnames consist of many directories, each with its own
permissions, which are combined in a non-obvious manner to yield the effective permissions
for the entire name. In contrast, a filename in SIMPF'S is just a single entity with explicitly
specified permissions. Thus SIMPF'S provide applications with radically simplified seman-
tics, making it easier to use the filesystem without falling into traps. At the same time, we

Approved for Public Release; Distribution Unlimited.
14

argue that the vast majority of contemporary applications in POSIX systems do not really
need directories, and can be implemented over the simple SIMPF'S interface without loss of
functionality.

5.1 Related Work

Triggered by Joshi and Holzmann’s mini-challenge [JHOT7], there is a lot of recent work on
formalization and verifications of file systems. Most notably, Freitas et al [FWF09] specify
and prove a POSIX file store in Z/Eves. This body of work focuses mostly on the correctness
aspects and does not address in depth the security and access control aspects of filesystems.
In the broader perspective of (secure) operating systems, there is a long history of formal-
ization and verification, from PSOS [NF03] to the recent seL4 [KEHT09]. While they make
considerable progress toward high-assurance OS, these works are not based on frameworks
that allow easy composition of components to form larger systems. Additionally, the focus
in many of these works is on mandatory access control whereas we cover a discretionary
control. (We stress that although our model addresses integrity concerns, these are very
different from the Biba integrity model [Bib77].)

An abstract model of another large standard systems, the browser, suitable for proofs of
cryptographic protocols exists in [GPS05]. Tt includes a model of information-flow properties
under attack. However, the federated identity protocols built on top of it have only been
proven secure with respect to specific security properties, not in a real-world / ideal-world
setting [GPS05].

Protocol Composition Logic (PCL) [DDMRO07a] is a comparable general approach on
reasoning about (cryptographic) network protocols in a composable fashion. Recently, PCL
was applied to analyze systems [DFGKO09], more specifically integrity properties provided by
TPM. The symbolic and axiomatic nature of PCL leads to a more axiomatic specification of
security rather than the declarative form in UC. Furthermore, the composition theorems in
PCL are weaker than in the UC framework.

A noteworthy contribution to secure composition of large software systems is the CHATS
project [Neu], that identifies architectural principles to guide the structuring and decompo-
sition of trustworthy systems. That work is largely orthogonal to ours, as it does not focus
on formal modeling or proofs.

There have been many more attempts to leverage well-established formalisms such as
logic, typing or process calculi to model composability of certain system security properties,
e.g., McLean [McL96] for non-interference properties or Bengtson et al [BBF*11] for crypto-
graphic protocols and access control mechanisms. Many of them provide tool support; but
they do not provide the same composition guarantees as in the UC framework.

5.2 Conventions for Software systems

The UC Framework was largely defined to precisely capture cryptographic protocols and
primitives which are very mathematically exact. The formal description of the artifacts is

Approved for Public Release; Distribution Unlimited.
15

done in terms of probabilistic interactive Turing machines (ITMs) which are more amenable
to precise analysis. Using this to model OS services requires extensions to model many
features such as preemptive multitasking, processes, kernel functions etc. Instead of writing
down an entire new set of definitions in terms of probabilistic Turing machines, we briefly
describe, at a very high level, some technicalities that must be resolved when attempting
to apply the UC framework to software system, and the conventions that we use to address
them. The “entities of interest” in our work are processes, which differ somewhat from the
interactive Turing machines in common cryptographic models. One aspect relates to side-
channels: whereas an I'TM can only influence other ITMs by sending messages, a process
shares some physical resources with other processes on the same machine, so it could influence
them via side channels such as timing and concurrency. In this work we ignore that aspect,
i.e. we do not have any side channels in our formal model. (This does not matter for our
current SIMPF'S model, since we do not model any secrecy requirements.) We thus just let
the adversary learn “whatever it needs,” so it has no use for side channels.

A more important difference is preemptive multitasking: common cryptographic models
postulate a sequential scheduling model, where an active I'TM keeps the control until it sends
a message, at which point the recipient becomes active. On the other hand, processes in
contemporary OSes can be made to yield control involuntarily. Resolving this discrepancy
is not as hard as it may seem, since (side-channels aside) an active entity has no effect on
its surroundings until it sends a message, which means that influencing the surroundings
only comes with losing the control. We use the standard sequential scheduling of the UC
framework, but ensure that the adversary gets the control after every message is sent, and
can decide when this message will be delivered. (This is somewhat similar to the “buffer
scheduler” from [BPWO07].) Hence the adversary in our formal model is able to simulate the
actions that would have happened in the actual deployed system, delay delivery messages
until the simulation arrives at the point where they were delivered. We thus argue that the
formal adversary in our model is able to induce any behavior that can happen in the actual
deployed system.

Another difference is that some processing in real systems is done not by the processes
themselves, but by the kernel on their behalf. Hence also in our model we postulate the
existence of a “kernel component” that can do things on behalf of processes. In our filesystem
example, this kernel component is only responsible for maintaining the process privileges:
Whenever a process calls a filesystem function, the kernel adds the process-id and roles of
the calling process to the list of arguments, and forwards everything to the filesystem. (The
kernel component gets these roles from the environment.) We note that although we do not
use it in our filesystem example, in general we could have several such “kernel components”
in a system, representing several physical machines.

5.3 SimpFS: A Simple Idealized File-System

This section describes SIMPF'S, our simple filesystem model. SIMPF'S has a minimalistic in-
terface with simple semantics, having only basic primitives to create, read, write and delete

Approved for Public Release; Distribution Unlimited.
16

files. Still, we believe that the this file-system functionality is sufficient for most applica-
tions. (Other aspects — such as locking — can be implemented on top of our interface.)
The SIMPFS model includes file write permissions, hence capturing properties of filesystem
integrity. We currently do not model read permissions, but we expect that this work can be
extended to include read permissions without too much change.

An important feature of SIMPF'S is that it does not have any directories, only files and
their names. As we mention in the introduction, we believe that directories have “inherently
cumbersome semantics”, hence decided to do away with them in order to keep the semantics
as simple as possible. We stress that the model supports names that include ‘/’ (so applica-
tions can still store their temporary data in files with names that begin with “/tmp/”). But
a name such as “/a/b/foo” is viewed as just one entity, and its existence does not imply
the existence of an object with name “/a/b.” Of course, our implementation over POSIX
still interprets /7 as a directory separator, and name creation induces the right associations
between names and paths, in spite of symlinks, adversarial write permissions etc. While
directories are a useful and convenient way to manage and organize systems, we argue that
directory permissions are very rarely needed in applications (if ever), and most applications
can therefore directly use the SIMPE'S interface.

A key security property of SIMPF'S is that it rules out filename manipulation attacks.
Our focus on this property is motivated by the large number of privilege escalation attacks
due to unsafe pathname resolution that were discovered in POSIX systems over the years. A
classical example of this type of attacks is local mail delivery, where /var/mail may be world-
writable, allowing an adversary to create a link from /var/mail/root to (say) /etc/passwd,
thereby “tricking” a naive mail-delivery program (running as root) to write the content of
incoming mail into /etc/passwd. Such attacks arise due to the opaque mapping of names
to files in POSIX. SIMPF'S features a very tight binding between files and their names: a
file can be manipulated only with the names it was created with.

We describe an implementation of SIMPF'S over contemporary POSIX filesystems and
rigorously prove that this implementation realizes SIMPF'S, using the UC framework. The
proof implies that processes that use our implementation will be protected against path-
name manipulation attacks such as above even if adversarial processes use the same POSIX
filesystem in arbitrary ways.

5.3.1 A formal model of SimpFS

SIMPE'S consists of files and their names. A newly created file is given some names, and
thereafter the file can be accessed by any of these names. Existing names can be deleted,
but one cannot add names to existing files. When deleting names, a file can end up with
zero names, in which case it is not reachable anymore so we can consider it as deleted. We
associate permissions with both the file names and the files themselves:

e Every file has a list of roles that can write in it, called the Writers list. A process can
write to a file if it holds a role in the Writers list of the file.

Approved for Public Release; Distribution Unlimited.
17

CreateFile(Writers, Manipulators, Names, pid, Roles)

{
// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("CreateFile",Writers,Manipulators,Names,pid,Roles);
if (retCode !'= 0KAY) return retCode;

var codes[] = empty; // a local list of return codes, one per name
var f = index of next available entry in the files[] array;
files[f].data=empty, files[f].Writers=Writers;

// Allow the adversary to decide whether to create each name
for each fName in Names {
var code = AdversaryAction("CreateOneName", fName);
if (code!=0KAY) codes[i]=code;
else {
if (names[fName] already exists) codes[i] = FILE_EXISTS;
else {
names [fName] .file=f, names[fName].Manipulators=Manipulators;
codes [1]=0KAY;
}r}
call AdversaryAction("Done CreateFile") and then return codes;

}

DeleteName (fName, pid, Roles)

{
// Allow the adversary to fail the operation and decide the error code
var retCode = AdversaryAction("DeleteName",fName,pid,Roles);
if (retCode !'= 0KAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
if (Roles intersect names[fName].Manipulators = emptyset) return NO_PERMISSION;

delete names[fName]; // Note: no point deleting the file, even if not reachable
call AdversaryAction("Done DeleteName") and then return OKAY;

}

Write(fName, atAddr, data, pid, Roles)

{
// Allow the adversary to fail the operation
var retCode = AdversaryAction("OpenWrite",fName,pid,Roles);
if (retCode !'= 0KAY) return retCode;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file; // f serves as a "handle" to the file
if (Roles intersect files[f].Writers = emptyset) return NO_PERMISSION;

var numBytes = AdversaryAction("Write",fName,atAddr,data,pid,Roles);
if (numBytes < length(data)) truncate data to numBytes bytes; // only partial write

var nBytes = length(data);

if (atAddr < 0) atAddr = length(files[f].data); // append

else if (atAddr > length(files[f].data)) {
prepend (atAddr-length(files[f].data)) zero bytes to data;
atAddr = length(files[f].data);

}

write data to files[f].data starting at position atAddr;

call AdversaryAction("Done Write") and then return [OKAY,nBytes];

Figure 1: SIMPF'S commands.

Approved for Public Release; Distribution Unlimited.
18

Read(fName, fromAddr, nBytes, pid, Roles)
{
// Allow the adversary to fail the operation or read less bytes
var [retCode,numBytes] = AdversaryAction("Read",fName,fromAddr,nBytes,pid,Roles);
if (retCode '= 0KAY) return retCode;
if (numBytes < nBytes) nBytes = numBytes;

if (names[fName] does not exist) return FILE_DOESNT_EXIST;
var f = names[fName].file;

if (fromAddr < 0) fromAddr = 0;

else if (fromAddr > length(files[f].data)) {
fromAddr = length(files[f].data);
nBytes = 0;

¥

if (nBytes < 0) // read to end-of-file
nBytes = length(files[f].data) - fromAddr;

data = content of files[f].data from fromAddr for nBytes;

call AdversaryAction("Done Read") and then return [OKAY,nBytes,datal;

Figure 2: Other SIMPF'S commands.

e File names have a set of Manipulators, listing all the roles that have permission to
delete that name.

In the current version we do not have read permissions, which means that SIMPFS allows
every process to read every file.

In more details, our ideal SIMPF'S maintains an array of files and an associative array of
names: files[] is an array of files (indexed by integers). Fach entry is a file, consisting of
an array of bytes (i.e., a data blob) and a list of roles (specifying the Writers of this file).
names [] is an associative array (indexed by strings). We refer to the index of an entry as a
fileename, and each entry consists of a pointer to a file (i.e., an integer) and a list of roles
(specifying the Manipulators of this name). The interface below constrains the Manipulator
lists, making sure that all the names of the same file have the same set of Manipulators.
(This choice is not very important, it is done mostly to simplify the presentation.)

In the initial state, the file-system is empty, with no files and no names (i.e., both arrays
are empty). There are only four operations that are supported in SIMPFS: CreateFile
creates a new file with some names, DeleteName deletes an existing name, Read reads data
from a file (specified by some name), and Write writes data to a file (specified by some
name).

The semantics of these operations is described by the pseudo-code in Figure 1 and Fig-
ure 2. As is the case with every formal UC functionality, the pseudo-code includes not only
the intended functionality as seen by the legitimate users of the system, but also all the
interfaces that an adversary can utilize to attack it. This is codified by an AdversaryAction
call, in which SIMPF'S “leaks” to the adversary the details of its operation, and also lets the
adversary influence these operations.

Approved for Public Release; Distribution Unlimited.
19

A key feature of SIMPF'S is that a file can be accessed only using one of the names that
were specified when the file was created, thus eliminating filename-manipulation attacks
such as described above. Hence proving that an implementation realizes SIMPF'S implies in
particular that such attacks cannot be successfully mounted against the implementation.

We make no liveness guarantees in SIMPF'S, so at the beginning of every operation the
adversary is given the option to abort the operation and determine the error code. (This
does not mean that an implementation of SIMPF'S cannot ensure some liveness properties,
but it means that a proof that an implementation realizes SIMPF'S carries no such guarantees
within itself.)

The pseudo-code includes with every call also the process-id and permissions (Roles) of
the caller, which in our system model are filled by the kernel component, cf. Figure 3.

(Formally there is also an implicit “invocation id” for each call of one of the four main
operations, allowing SIMPF'S to handle messages received from the ideal-world adversary
for different invocations.) Note also that the AdversaryAction at the beginning and end of
every operation comply with our convention that the adversary gets the control before any
message is delivered. Finally, we note that all the variables in the code in Figure 1 are local
to that invocation, except for the global files[] and names[].

PROCESS CORRUPTION. Following the standard conventions of the UC framework, SIMPF'S
has a special procedure to handle the case where the adversary corrupts a process. For our
purposes it is more convenient to let the environment decide when a process is corrupted (as
opposed to the adversary, which is the more common convention in UC-model works). When
the environment corrupts a process, this process makes a call TamCorrupted(pid,Roles),
to inform SIMPFS that “it belongs to the adversary” now. SIMPF'S informs the adversary
of this call, and it remembers that this process and all its roles are now bad. Thereafter, the
adversary is allowed to make all the usual calls to SIMPF'S (CreateFile,DeleteName, Read,
Write) on behalf of that process. SIMPFS will process these calls just as if it was the
corrupted process that made the call, but will return the result to the adversary rather than
to the environment.

Every call from the corrupted process (not via the adversary) will be routed directly
to the adversary, and the adversary can always instruct SIMPF'S to send anything to the
corrupted process (which will then be forwarded to the environment). Also, if the roles of
the corrupted players change then the kernel component will notify SIMPF'S of this change.
SIMPF'S will add any new role that a corrupted process acquires to its list of bad roles, but
it will not remove any roles from that list, even if the corrupted process loses some of its
roles. (This last aspect represents the fact that the corrupted process may already have used
this role to introduce artifacts into the filesystem, that will remain even after the process no
longer has this role.)

ATOMICITY OF THE SIMPFS OPERATIONS. The operations DeleteName and Read are
atomic, whereas CreateFile and Write are not: In DeleteName and Read, once the ad-
versary allows the operation to go through (by returning 0KAY), SIMPF'S holds onto the
control-flow throughout the name lookup and the operation itself, and only then it yields

Approved for Public Release; Distribution Unlimited.
20

control back to the adversary.

In Write, on the other hand, the control is returned to the adversary after the file lookup
(via the call AdversaryAction("Write", ...)), and only then is the operation carried out.
Similarly in CreateFile, the adversary gets the control before the creation of any name.
This choice was made so that we would be able to realize SIMPF'S over the POSIX interface
that requires to open the file and then write in it. The real-world read can be made atomic
by checking after the fact that the file did not change since it was opened, but for write such a
check is meaningless since the file was already written. (See also the attack in Section 5.4.5.2
for another reason for the check after read.)

MAPPING UNIX PERMISSIONS TO ROLES. The interfaces of SIMPFS above are defined with
“generic roles” that encode permissions, with access control being a simple role inclusion.
Our implementation over POSIX, of course, uses userids and groups, which are particular
types of roles. The mapping is quite straightforward, roughly there is a different role for each
userid and group in the system, and a process gets the role corresponding to its effective-
uid and all the roles corresponding to its groups. There is also one role for “others”, that
every process has. Some care must be taken since POSIX permissions do not exactly follow
role inclusion. (For example, if a file is not owner-readable then the owner cannot read it,
even if the file is readable by “others”.) Adjusting the mapping to this technicality is quite
straightforward, and is omitted here.

5.4 Implementing SimpFS over POSIX

We describe simpfs, which is a concrete implementation of the SIMPF'S functionality over
the POSIX filesystem interface [IEE08]. The presentation below focuses on a user-space
implementation, where each simpfs operation runs with the effective uid of its caller, but we
point out that the same procedures can also be implemented in the kernel. (See Figures 3
and 4 for illustrations of the system model in both cases.)

Our implementation relies on the “safe pathname resolution”, described in more detail
in Section 6, that protects processes from opening adversarial links. While resolving paths
this procedure ensures that an adversary can not manipulate the resolution to result in
opening unintended components. In simpfs, very roughly speaking, each operation consists
of first using that procedure to open the corresponding file and then performing the actual
operation.

Before describing this implementation, we first introduce concepts that are used in the
rest of the section and describe some assumptions that we make on the POSIX filesystems
underlying our implementation. Then in Section 5.4.2 we describe the safeDirOpen procedure,
which is the heart of our implementation, and then in Section 5.4.3 we describe the rest of
the implementation.

Approved for Public Release; Distribution Unlimited.
21

5.4.1 Concepts and Properties of POSIX

We assume that the reader is familiar with basic concepts of POSIX such as directories,
pathnames, users and groups, hardlinks and symlinks, etc.

Definition 1 (Pathname Manipulators) Let /dir1/.../dirn/foo be an absolute path-
name. The manipulators of this pathname are all the roles (users and groups) that own, or
have write permissions in, any directory visited during the resolution of this pathname.

Note that the definition applies even when a pathname does not resolve, and that root
is a manipulator of every pathname.

Definition 2 (Safe Names) A pathname is system safe if its only manipulator is root.
A pathname is safe for U (where U is a user-id) if its only manipulators are root and U.
Otherwise, the pathname is unsafe for U.

For example, in a typical UNIX system the pathname /etc/passwd is system safe, the
pathname /home/joe/mbox is safe for user joe, and the pathname /var/spool/mail/jane
is unsafe for everyone (as /var/spool/mail may be world- or group-writable).

Definition 3 (Simple Pathnames) A pathname is simple if it is an absolute path that
resolves to a reqular file, its elements are only hard links (i.e., not symbolic links), no elements

¢)

are named ‘. or ‘..’ and the pathname contains no repeated slashes ‘//’.

AsSsUMPTIONS. We now list some properties that we assume on the underlying POSIX
system, and use in our proof of security. Most of these assumptions are justified either
by the fact that they are part of the POSIX specification itself, or by the fact that many
contemporary POSIX filesystems seem to satisfy them.

Assumption 1 The underlying filesystem does not contain multiple mount points to the
same filesystem, and each directory has only one parent (i.e., one hard link with a name
other than .7 or <..’).

Justification. Assumption 1 is justified by the fact that nearly all contemporary POSIX
implementations either do not allow processes to create additional hard links to directories
(e.g., FreeBSD, Linux) or restrict this operation to the super-user (e.g., Solaris, HP-UX). A
notable exception is MacOS.

We observe that given Assumption 1, for every reachable hard link to a regular file
there is a unique simple name that ends with that hard link. Moreover a resolution of any
absolute name that ends with that hard link will visit all the directories in this unique simple
pathname.

Approved for Public Release; Distribution Unlimited.
22

Assumption 2 (Permissions) 1. If an operation by a process affects the content of a
file, then the process must have write permission for that file. 2. Let P be an absolute
pathname. If an operation by a process affects the resolution of P or changes the permissions
or ownership of any of the directories visited during its resolution, then that process must
have a role which is a manipulator of P.

Justification. The only operations that affect pathname resolution are creating, removing,
or renaming pathname components, and they all require write permission in the containing
directory. Also, note that only the owner of a directory (or root) can change the permissions
of that directory, and in most systems only root can change ownership.

Corollary 3 Let P be some pathname, denote by M(P) the set of manipulators for P (user-
ids and groups), and let B be a set of roles such that M(P) N B # 0. Then changing the
manipulator set for P so that M(P) N B = () requires an operation by a process with some
role outside of B.

Proof: The only operations that change the manipulator-set of a pathname are changing
the permissions or ownership of some visited directory, or moving, renaming, or removing
some visited directory, symlink, or the last hardlink.

Denote by op the first system call after which the manipulator-set of of P is disjoint
from B. Denote by M'(P), M”(P) the manipulator set of P just before and just after
the system call op, respectively, so M'(P)N B # M"(P)NB = (. Since op changes the
manipulator set of P, it must have succeeded, hence the calling process must have had some
role R* with sufficient privileges for performing op.

Assume toward contradiction that the calling process has only roles in B, and thus R* € B.
Since R* has sufficient privileges for one of the manipulator-changing operations then by
Assumption 2 R* € M’(P). We now have three cases: either op is chown (so R* is root
hence it remains a manipulator), or op is chmod (so R* is the owner of the directory so it
remains the owner), or op is any other manipulator-changing operation so R* is a writer in

the containing directory and it remains so after the operation. In each case R* remains a
manipulator, R* € M"(P) N B, hence M"(P)N B # (. O

Assumption 4 The hardlink to a directory in its parent directory can only be removed
when the child directory is empty. Moreover, after the hardlink is removed from the parent
directory, no further entries can be created in the child directory, even if some process still
holds a handle to it.

Justification. The last part of Assumption 4 is justified by the fact that rmdir implemen-
tations remove the entries *.” and ‘..’ from the child directory before removing the hard
link in the parent directory, and no new entries can be created in directories without ‘.” and

¢ I

Corollary 5 If a system call for creating an entry in a directory returns successfully, then
the hard link for this directory in its parent directory could not have been removed before that

system call, or removed after the call but before the newly-created entry is removed.
Approved for Public Release; Distribution Unlimited.
23

5.4.2 The safeDirOpen procedure

Underlying our simpfs implementation is a procedure for safe name resolution. Our proce-
dure, safeDirOpen, takes an absolute pathname, resolves it “in a safe manner” and returns
a handle to the directory containing the final hard link to the actual file, the name of that
hard link, and additional information as discussed below. The top-level operations of simpfs
first call safeDirOpen and then perform the requested operation on the final hard link.

safeDirOpen resolves a pathname one atom at a time, each time opening the next atom
(or reading it, if it is a symlink), while keeping track of the owners and writers of the visited
directories. (Below we identify the time that a directory was visited as the time when it was
opened, and the time that a symlink was visited with the time that it was read.)

The procedure can be in one of three states: system-safe, safe-for-uid, or unsafe. When
invoked (by a process with effective uid U), the procedure begins in a system-safe state,
switching to safe-for-uid state upon visiting a directory where U is an owner or writer, and
switching to unsafe state upon visiting a directory with any writer or owner other than
root or U. Once in unsafe state it stays in that state for the duration of the current name
resolution. Likewise, there is no transition from safe-for-uid to the system-safe state.

When safeDirOpen enters the unsafe state, it does not follow symlinks for the remainder
of the current name resolution. Also, for technical reasons the procedure never accepts
pathnames that contain multiple slashes ‘//’ or have components named ‘.” or ‘..’, and it
refuses to visit any directory whose name begins with the special prefix _SimpFS_ephemeral .
In any of these cases, the procedure returns an error code.

Once safeDirOpen arrives at the final atom (and verifies that it is indeed the final atom
and not a symlink), it ends successfully, returning a handle to the directory containing
this last hard link, as well as the name of the hard link. In addition, safeDirOpen returns
its current state (system-safe, safe-for-uid, or unsafe), the set of owners and writers of the
directories that it visited, and an array of (handle,name) pairs, containing handles to all
visited directories, and the names that were looked-up in those directories. (These names
could belong to either a directory, a symlink, or the final hard link.)

Upon failure, safeDirOpen returns an error code, a handle to the last directory pathname
component that was successfully resolved, the state (system-safe, etc.) and manipulators of
that directory, and the unresolved remainder of the pathname. For example, when called to
resolve /a/b/c, if it encountered an error after visiting /a but before visiting /a/b, then it
will return a handle to directory /a, the state and manipulators of /a, and the remainder
of the pathname argument “b/c”. (Note that this will be the return value even if /a/b
happens to be a symlink and the procedure visited more directories after /a, but could not
completely resolve /a/b.)

5.4.3 Implementing the simpfs commands

createFile(Writers,Manipulators,Names). When called by a process with effective-uid U,
the procedure begins by checking that U belongs to the set of manipulators specified by the
Manipulators parameter. Then it creates a new file with an ephemeral name that begins

Approved for Public Release; Distribution Unlimited.
24

with the special prefix _SimpFS_ephemeral_. This ephemeral name is created so that it is
safe for U, thus ensuring that no other users can remove or rename it.See Section 5.4.5.4 for
a short discussion of this point.

Now createFile attempts to set the write permissions of the new file as specified in the
Writers parameter. If this is successful, it proceeds to create the names, one at a time,
by calling the subroutine createOneName for each name in Names. After all the calls to
createOneName, the procedure createFile removes the ephemeral name that it created for
the new file, and returns the vector of return codes that it received from all the calls to
createOneName.

The subroutine createOneName(fName) begins by checking that the new name is an abso-
lute name, and that it does not contain ‘//’ or elements named ‘.” or ‘. .’, or elements that
begin with _SimpFS_ephemeral_. Then it calls safeDirOpen(fName) thus obtaining a handle
to the last successfully resolved directory on this pathname and the corresponding set of
manipulators. If all the directories were resolved successfully, then createOneName checks
that the set of manipulators equals the Manipulators parameter, and aborts if they differ.

If some directories were not resolved, createOneName verifies that the manipulator set
of the prefix is not too large (i.e., it must be contained in the Manipulators parameter),
aborting otherwise. Then createOneName attempts to create the remaining directories, one
at the time, initially creating each one so that it is only writable by owner U with an
ephemeral name that begins with _SimpFS_ephemeral_. Upon success, it tries to set the
write permissions of the last directory so that the resulting set of manipulators will match
the Manipulators parameter. Then it goes over all the newly created directories, top to
bottom, renaming each one to the name that it is supposed to have according to fName.

Once all the directories exist and have the right set of manipulators and the right names,
the procedure createOneName makes a linkat system call to create a hard link in the last
directory, pointing to the new file. createOneName then returns whatever code was returned
from the linkat system call.

If any operation fails, then createOneName attempts to clean-up after itself, trying to re-
move all the directories that still have names that begin with _SimpFS_ephemeral_. However,
after a directory was renamed to its “permanent name”, createOneName does not remove it.

In the proof of security in Section 5.5 we rely on the following properties of our implemen-
tation of createFile:

e The initial ephemeral name for the new file is safe for the effective-uid of the calling
process.

e The procedure never creates symlinks, only directories and hard links.

e The procedure only changes permissions and /or removes pathname components if these
components begin with the special prefix _SimpFS_ephemeral..

e A name fName is created if and only if the linkat system call at the end of the
subroutine createOneName(fName) is successful.

Approved for Public Release; Distribution Unlimited.
25

deleteName(fName). When called with effective-uid U, deleteName calls safeDirOpen(fName)
and aborts if that function fails. Else deleteName has an array of pairs (handle,name), and
the state with which safeDirOpen arrived at the final directory (system-safe, safe-for-uid,
or unsafe). If the state is not system-safe, then deleteName checks that the final directory
is either world-writable, or owner-writable and owned by U, and it aborts otherwise.This
check is intended to protect against privilege-escalation attacks on setgid programs, cf.
Section 5.4.5.1. Also, if the state is unsafe then deleteName checks that the file that the hard
link points to has only a single hard link, aborting otherwise.

Then deleteName attempts to delete the final hard link, followed by attempts to delete
the directories higher-up on the path. deleteName returns when any system call to remove
a name fails, or when any of these names resolves to a symlink, or when it is done deleting
all the names in the array. The return code from deleteName is whatever was returned from
the first unlink system call (i.e., the one that deleted the hard link at the end of fName).

We note that barring a race condition, this implementation of deleteName does not delete
symlinks. In the proof in Section 5.5 we show that the only cases where these race conditions
are possible are when the adversary already has permissions to delete these symlinks by itself.

read(fName,...). When called with effective-uid U, read calls safeDirOpen(fName) to get a
handle for the final directory, the name of the hard link pointing to the actual file, and the
state at which it arrived in this last directory: system-safe, safe-for-uid, or unsafe. Then
read uses openat, lstatat and fstat to open the file and verify that it is still the same file
(and not a symlink). In addition, if the state is not system-safe, then read checks that the
file is either world-readable, or owner-readable and owned by U, and it aborts otherwise.
Also, if the state is unsafe then read checks that the file has only a single hard link, aborting
otherwise.

Then the procedure uses the read system call to read the file, and before closing the file
it makes yet another 1statat system call to check that the hard link still points to the same
inode as it did when it was opened. (See Section 5.4.5.2 for the reason for this last test.) If
all these checks pass, then read returns the result from the read system call.

write(fName,...). The procedure write is almost identical to read except that it adds a write-
permission check on the actual file, and it does not do the final check after writing to verify
that the hard link still points to the same inode. (Indeed, such check is useless since the file
was already written to.)

5.4.4 Consistency properties of the implementation

In the proof of security in Section 5.5, it is important to consider what changes may happen in
the filesystem between the time that the safeDirOpen pathname resolver visits some directory
and the time that the procedure that called safeDirOpen returns. An important technical
observation is that if the procedure that called safeDirOpen was successful then none of those
visited directories could have been removed during this time.

Lemma 6 Consider an execution of one of the procedures createOneName, deleteName, read,
or write on arqument fName, and assume that the procedure succeeds (i.e., does not return an

Approved for Public Release; Distribution Unlimited.
26

error code). Assume further that no symlink that was read during name resolution was later
deleted or renamed during the execution of this procedure, and no directory was renamed
after it was opened by this procedure. Then also none of these directories was deleted after
it was opened and before the time that the procedure issued the system call (respectively,
linkat, unlinkat or openat) for the final hard link in fName.

Moreover, for the procedures createOneName, read, and write, as long as no symlinks are
deleted or renamed, no directories are renamed, and the final hard link in fName exists in
its original containing directory, then also none of these directories is deleted even after the
operation returns.

Proof: Assume not, and consider the first directory that was deleted after it was opened.
There are two cases to consider: this directory was deleted either before or after name
resolution visited the next pathname component (i.e., symlink read, directory or file opened).

By Assumption 4, the directory could not have been deleted before the next component
was accessed, else the subsequent access would have failed. But it also could not have
been deleted after the next pathname component was visited, since the directory must have
been non-empty: If the next pathname component is a symlink then this follows from our
assumption that symlinks were not removed or renamed, if it is a directory then it follows
from our assumption that directories were not renamed and the fact that we consider the first
directory to be removed, and if it is the final hard link then it follows from our assumption
that it still exists in its containing directory. U

Jumping ahead, we use Lemma 6 in the proof by noting that our SIMPEF'S implementation
never renames or removes symlinks, or renames directories, and hence no uncorrupted process
will do any of these things. If in addition we know that no corrupted process has write
permissions in any of the directories visited then also corrupted processes could not rename
or remove symlinks or rename directories. Thus, we can apply Lemma 6 and conclude that
all the directories stay put throughout the execution of createOneName, deleteName, read,
or write.

5.4.5 Rationale and Discussion

Before proceeding to the formal proof of security, we discuss here some of the rationale for
our implementation, including some specific attacks that the implementation was designed
to foil.

5.4.5.1 Privilege-escalation attacks on setgid programs Our implementation of
safeDirOpen only considers the effective-uid for the purpose of determining the safety of a
directory, and thus we must consider the possibility of privilege-escalation attacks between
processes with the same effective-uid. In contemporary UNIX systems, two processes with
the same effective-uid can have different filesystem privileges only if one of them has a group-
privilege that the other does not,(we ignore the fsuid of Linux here) as would happen when
one of these processes runs a setgid program.

To see the problem, consider two processes running with effective-uid of joe, one having
the additional group privilege of mail while the other is compromised by an attacker (e.g.,

Approved for Public Release; Distribution Unlimited.
27

due to a buffer-overflow vulnerability). Ideally, we would like to argue that files which have
read /write permissions for the mail group (but not user joe) are still protected against the
compromised process.

Assume that the non-compromised process with mail group privileges needs to delete
a file /home/joe/dir/foo. The compromised process can create a symlink /home/joe/dir
-> /var/mail, “tricking” the other process into deleting /var/mail/foo (assuming that
/var/mail/ is writable by group mail). Embedding this attack in our formal model, we
have a name /var/mail/foo for which joe is not a manipulator, and a good process that
attempts to delete an unrelated name /home/joe/dir/foo, and yet by some action of a
compromised process with joe privileges, this results in the deletion of /var/mail/foo.

We fix this problem by adding a check to the operations deleteName, read, and write,
aborting if the name is not system-safe and group privileges are needed to perform the
operation. Very roughly, this defense works because it prevents the use of group privileges
after following symlinks that were created by non-root processes. (We note that we do not
need this extra precaution in createOneName. This is because the SIMPF'S functionality
restricts deletion of existing names, but puts no restrictions on the creation of names that
do not exist.)

5.4.5.2 An attack on open-then-read programs To understand the need for another
check of the final hard link after a read system call in a read operation, we describe the
following potential attack: Consider the three programs sshd that needs to read the file
/etc/passwd, passwd that replaces the file /etc/passwd by a new file upon successful edit,
and the MTA local delivery that needs to write into /var/mail/root. The passwd program
runs with root privileges, because it is a setuid-root program, and the MTA local delivery
runs with root privileges in order to append to the /var/mail/root mailbox file. Also,
assume that the directory /var/mail is world writable and that initially /var/mail/root
does not exist. The attack consists of the following sequence of steps:

1. The attacker creates a hard link /var/mail/root, pointing to /etc/passwd.

2. The attacker opens a new ssh connection, causing sshd to open the file /etc/password
for read. (Note that since /etc/passwd is a system-safe name, the open will succeed
even if there are multiple hard links.) At this point the attack relies on the sshd
process to be switched out and remain inactive until Step 5 below.

3. The attacker then uses the passwd command to change its password, thereby caus-
ing the old /etc/passwd file to be replaced by a new file. (Note that the hard link
/var/mail/root is now the only hard link still pointing to the old /etc/passwd file,
and that the sshd process still holds a handle to that file.)

4. The attacker sends email to root@localhost, causing the MTA local delivery to ap-
pend the content of that message to /var/mail/root.

Approved for Public Release; Distribution Unlimited.
28

5. The sshd process is now switched in again and reads from its handle to the old
/etc/passwd file, thereby reading also the data that was written there by the MTA
delivery agent.

To thwart this attack, we added the 1statat check between reading and closing the file,
verifying that the hard link still points to the same file. We stress that it is possible to switch
the link back and forth to foil this extra test, but it is sufficient for the purpose of our simpfs
implementation. Non-adversarial processes will never attempt such a back-and-forth switch,
and adversarial processes either do not have the privileges needed to foil the test, or else
they have sufficient privileges to manipulate the file directly. (Our proof relies on this extra
test in the analysis of the read operation).

5.4.5.3 Our treatment of symbolic links Our proof of security in the full version
Section 5.5 relies in places on the assumption that good processes do not create symlinks.
This is consistent with our simpfs implementation (that indeed does not create symlinks),
but it begs the question why we allow safeDirOpen to follow symlinks at all.

The reason is that the implementation of simpfs is useful also in situations where the
filesystem includes non-adversarial symlinks. A close inspection of our proof shows that the
arguments remain valid also in the presence of non-adversarial symlinks, as long as the files
that have non-adversarial symlinks in their names remain static (i.e., they are not deleted,
removed, or moved). It is even possible to modify the semantics of SIMPF'S to accommodate
non-adversarial symlinks in a dynamic filesystem, but the new semantics will not be as simple
anymore.

5.4.5.4 Using the sticky bit Recall that the initial ephemeral name for a new file must
be safe for the effective-uid of the calling process (denoted U). Such a name can perhaps
be created in U’s home directory, but not all uid’s have one. A simple way of achieving
the same result in contemporary UNIX systems is creating this ephemeral name in /tmp,
relying on the fact that /tmp is owned by root and has the sticky bit on. This does not
quite fit into our definition of “safe for U” (since /tmp is world-writable), but it suffices for
the purpose of our proof of security. Specifically, what we need is to ensure that as long as
the calling process holds a handle to the new file, only U or root can change the resolution
of the ephemeral name.

5.5 Proof of Security

We next prove that our simpfs implementation realizes the SIMPF'S functionality over POSIX,
given our assumptions from Section 5.4. The proof refers to a system model where simpfs
is implemented in user-level code and relies on an incorruptible kernel component that han-
dles process permissions; see Figure 3. Essentially the same proof shows that the simpfs
procedures realize the SIMPF'S functionality when implemented in the kernel (in which case
permissions are handled by the environment, cf. Figure 4).

Approved for Public Release; Distribution Unlimited.
29

Real world

Ideal world

F-n——

Figure 3: The real and ideal worlds for a user-level implementation of simpfs. The kernel
components that keep track of privileges are formally considered to be parts of the imple-
mentation and the ideal functionality.

Real world

Ideal world

Figure 4: The real and ideal worlds for a kernel implementation of simpfs. In this setting,
process privileges are handled by the environment.

Approved for Public Release; Distribution Unlimited.
30

Theorem 1 Our simpfs implementation realizes the SIMPE'S functionality over the POSIX
interface, provided that the underlying POSIX system satisfies Assumptions 1 through 4.

To prove Theorem 1 we show that there exists an ideal-world simulator S such that for
every real-world adversary A, no environment Z can distinguish the behavior of the real
world with A from that of the ideal world with S and A. We first define a few concepts
that will be important in the proof, then define the simulator &, and finally prove the
indistinguishability.

5.5.1 Useful Concepts

THE SIMULATED REAL WORLD. As usual, our simulator § interacts with the adversary A,
and it needs to simulate a complete picture of the real world as would be seen by this A and
the environment Z. Note that S knows all the calls made by A to the underlying POSIX
system. Also, the simulator knows the details of all the calls made by the legitimate players
to the SIMPF'S functionality (by virtue of the AdversaryAction calls made by SIMPFS).
Hence S can simulate the corresponding real-world implementation for these calls, keeping
a complete picture of the real-world POSIX system as it would exist in the real world at any
point in time. Below we call this POSIX system that the simulator keeps the simulated real
world.

BAD ROLES. Recall that the association between processes and roles (such as userid and
groups) is not one-to-one. This raises the possibility that some roles are held by both
corrupted and uncorrupted processes at the same time, and similarly a process can have
both “good” and “bad” roles.For example, we could have a corrupted process with userid
jack and group users and an uncorrupted process with userid jane and group users, so the
role corresponding to group users is held by both an corrupted process and an uncorrupted
one. Also the uncorrupted process holds both a “good” role (jane) and a “bad” role (users).
To handle these cases we introduce the following definition.

Definition 4 (Bad roles) At any point in a run of the system, the set B of bad roles
contains all the roles that were held by a corrupt process since the start of this run. The
other roles are called good roles.

Clearly, the set B is monotonically growing throughout the run of the system. The

simulator can make calls to SIMPF'S using any role in B, as per our process corruption
interface.
PROTECTED NAMES AND FILES. Throughout the simulation, some of the names in the
simulated real world also exist in the SIMPFS functionality, while the others exist for the
most part only “in the simulator’s head.” Intuitively, the former are the protected names
while the latter are unprotected. The formal notions of protected names (and also files) are
defined next.

Definition 5 (Protected Names) An absolute pathname fName that resolves to a reqular
file in the simulated real world at a given point in time is protected if no bad role in B is

Approved for Public Release; Distribution Unlimited.
31

a manipulator for fName. Pathnames that resolve to regular files but are not protected are
called unprotected.

Definition 6 (Protected Files) A file that exists in the simulated real world is protected
if no bad role in B has permission to write in it. Otherwise it is unprotected.

Unprotected names and files can exist only after some processes were corrupted. Also,
a system-safe pathname is protected if and only if no root process was corrupted, and
a pathname which is safe for U is protected if and only if no root or U processes were
corrupted.

Note also that protected names must be created by uncorrupted processes, since no
corrupted process has the permission to create them. This means that protected names can
only be either the names that were specified as arguments to createFile, or the temporary
names with special prefix _-SimpFS_ephemeral_ that are used inside the procedure createFile.
Below we refer to the latter as ephemeral:

Definition 7 (Ephemeral Names) A pathname in the simulated real world is defined to
be ephemeral if any of the pathname components begins with the prefix _SimpFS_ephemeral_.

5.5.2 The Simulator

The simulator’s strategy is to keep in the SIMPF'S functionality only protected names, while
it simulates the unprotected names internally. When a player tries to access such an unpro-
tected name, the simulator temporarily creates a file with that name in SIMPF'S by making
a CreateFile call on behalf of a corrupted process. The simulator then allows the main
operation to succeed and return an answer, and then deletes that temporary name using a
DeleteName call on behalf of the same corrupted process.

In a few more details, when the simulator is informed by SIMPFS that some process in-
voked an operation (CreateFile, DeleteName, Read, Write), it simulates the corresponding
procedure of the simpfs implementation (including any interleaving events). For DeleteName
and Read it returns OKAY if the procedure succeeds, for CreateFile it returns the first
OKAY once the temporary file is created and set with right permissions and then returns
OKAY for each name for which the 1ink system call succeeded. For Write it returns the
first OKAY when the procedure open’s the file, and then again when the procedure success-
fully write’s to the file. In all cases, if the procedure in the simulated real world fails, the
simulator returns the same error code.

For DeleteName, Read, and Write, before returning OKAY the simulator ensures that
a file with the corresponding name exists in the SIMPF'S functionality. If this name is an
unprotected, the simulator first creates a temporary file with this name in SIMPFS and
writes into it the content that it has in the simulated real world. The simulator also puts
these temporary names in a list of names to-be-deleted, and deletes them from SIMPF'S as
soon as it gets back the control. Similarly for CreateFile, if a successful createOneName

Approved for Public Release; Distribution Unlimited.
32

creates an unprotected name then the simulator puts that name on its to-be-deleted list and
deletes it from SIMPF'S once it gets back the control.

When receiving a Done Write call from SIMPFE'S, the simulator goes over all the protected
file names, looking for names for which the content of the corresponding file in the simulated
real world differs from that in the SIMPF'S functionality. If the file is unprotected (i.e., the
simulator has permissions to write in it) then the simulator makes a Write call to set the
content of the file in the SIMPF'S functionality to match that of the simulated real world.

PROCESS CORRUPTION. When the simulator learns from SIMPEFS that a process is cor-
rupted, it goes over all the file names that exist in SIMPF'S, and deletes each name that the
newly corrupted process can delete from SIMPF'S, using a call on behalf of that process. The
simulator also remembers that this process is now corrupted.

MODIFICATIONS OF FILES WITH PROTECTED NAMES. When a corrupted process modifies
the content of a file that has a protected name in the simulated real world, the simulator
makes a Write call to the SIMPFS functionality on behalf of the same process, setting the
content of the corresponding file inside SIMPF'S to match that of the simulated real world.

5.5.3 Proof of correctness

We show that with the simulator defined above, the view of the environment in the ideal
and real worlds is identical. As we noted above, it is sufficient to argue about the simulated
real world vs. the SIMPFS functionality. We now prove a sequence of lemmas relating the
names that exist in the simulated real world to those that exist in the SIMPF'S functionality.

Lemma 7 FEvery protected name that exists in the simulated real world is either ephemeral
or also exists in the SIMPF'S functionality.

Proof: Recall that protected names must be created by uncorrupted processes, since cor-
rupted processes do not have permission to write in the directories containing them. As per
our implementation, the only names of regular files that are created by uncorrupted pro-
cesses are either the names that are specified as parameter in createFile or ephemeral names.
As to the former, they are created via a successful 1link system call in createOneName, at
which point the simulator returns OKAY to the SIMPFS functionality, which in turn then
creates the name (if it does not already exist). O

Below we say that the a particular link (hard or symbolic) that exists in the simulated
real world remains unchanged during some time interval if it is not removed or renamed
in its containing directory, and its permissions and ownership remained the same. A path-
name remains unchanged if all the directories, links and filenames that are accessed during
resolution of this pathname remain unchanged.

Lemma 8 Fvery name fName that exists in the SIMPFES functionality and no corrupted
process has permission to delete it, also exists in the simulated real world and is protected.
Moreover, fName remained unchanged since it was last created in the simulated real world.

Approved for Public Release; Distribution Unlimited.
33

Proof: Fix any file name fName that satisfies the premise of the lemma. This cannot be
temporary a name on the to-be-deleted list, since those can be deleted by corrupted processes.
Thus the last time when it was created in SIMPFS was after a successful 1link system call
in createOneName, during a CreateFile call by an uncorrupted process. (Also fName is not
ephemeral, since our implementation of createOneName does not create ephemeral names for
regular files.)

Let M be the set of manipulators for fName in the SIMPF'S functionality, so by the
premise of the lemma M N B = (. Also, M was the manipulator-set specified in the
CreateFile call to SIMPF'S when fName was created. Recall now that the subroutine cre-
ateOneName keeps track of all the owners/writers in all the directories that it visits, and only
issues the final 1ink system call if that set equals M. Denote the directories visited during
name resolution (in order) by dirj,dirs,...,dir, and the final filename by foo. Since
M N B = () then set of writers/owners in those directories at the time where createOneName
visited them was disjoint of B. We next show that all these directories (and also the final
file) remained unchanged since createOneName visited them, thus completing the proof.

First, we claim that at the time of creation, fName was a simple pathname. That fName
does not include *.” or ‘..” or ‘//’ follows since createOneName does not create names
that include any of them. Also, uncorrupted processes in our implementation never create
symbolic links, so symbolic links can only be created in directories that are writable by
some role in B. This means that none of the directories dir; contained symbolic links when
the name-resolution visited them during createOneName, so in particular all the pathname
components visited (or created) by createOneName (except the final foo) were directories.
Once these directories were visited, they were not moved (since only corrupted processes can
move directories but none of them had permission to do so), hence by Lemma 6 they also
not removed before the hard link foo was created. Hence also at the time that foo was
created, the pathname fName was simple.

Next, assume toward contradiction that one of the directories dir; (or foo) was modified
or erased since it was visited by createOneName, and consider the first of them that was
modified or erased. By Assumption 2, the caller owned or had write permission in the
parent directory at the time of the change. Since the set of owners/manipulators is disjoint
of B, it means that the process that first modified/erased that pathname component must
have been uncorrupted.

In our implementation, system calls that modify permissions are used by uncorrupted
processes only on ephemeral names, which fName is not. Therefore the first modification had
to be a removal of a pathname component (by an uncorrupted process). Invoking Lemma 6
again, we know that none of the directories can be removed, thus the first pathname element
to be deleted has to be the hard link foo itself. Note also that hard links to files are only
deleted by uncorrupted processes during a successful DeleteName call to SIMPFS.

Denote the pathname argument to the successful DeleteName call that deleted foo by
fName2, and we argue that fName2 must be the same as fName. Clearly, fName2 cannot
include “.” or ‘..” or ‘//’ since safeDirOpen does not allow these. Also, recall that the
deleteName procedure was run by a process that had permissions to delete the hard link

Approved for Public Release; Distribution Unlimited.
34

foo, so it must have a different effective-uid from all the corrupted processes. Since only the
adversary creates symlinks, then symlinks must reside in directories that are unsafe for the
effective-uid of that process, hence safeDirOpen will not follow them. Therefore safeDirOpen
encountered only hard links (to directories) as it resolved the name fName?2.

We now argue that these directories must have been the same dir;,diry,...,dir, asin
fName, and moreover at the time of deletion the hard-link must have been called foo (as in
fName). For foo itself, we already established above that the first modification to it since it
was created was the time it was removed. Hence at the time of deletion it must have been
called foo and must have resided at deletion in the same directory in which is was created.

As for the containing directories, at the time that foo was created none of them was
writable or owned by corrupted players, which implies that none of them was writable or
owned by corrupted player any any point since these directories themselves were created.
(This follows from Corollary 5.) Thus these directories could not have been moved to their
containing directory at fName, they must have been created there with ephemeral names and
then renamed to their permanent name, which remained fixed at least as long as foo existed.
By induction on the pathname components of fName (starting from dir, and going back),
we therefore conclude that the deleteName procedure must have opened each dir; using a
handle to dir;_; and the same name that dir; has in fName. Hence fName2 and fName are
the same.

Summing up, we had an uncorrupted player who made a successful call to the procedure
DeleteName (fName) in the SIMPF'S functionality. But this means that fName no longer
exists in SIMPF'S, which is a contradiction. 0

Lemma 9 At any point in time, two non-ephemeral protected names resolve to the same
file in the simulated real world if and only if they belong to the same file in the SIMPE'S
functionality.

Proof: Fix any two non-ephemeral protected names that exist at some point in time in the
simulated real world. By Lemma 7 they also exist in the SIMPF'S functionality. For each
name, we look at the CreateFile call when it was last created in the SIMPFS functional-
ity, which was after the 1ink system call returned successfully in the respective simulated
createOneName subroutine.

If both createOneName subroutines were part of the same createFile procedure then they
were created pointing to the same ephemeral filename, and since they are protected then
also the ephemeral name was protected, which means that it was not deleted between the
two link system calls. Hence they were created pointing to the same file. On the other
hand, if the two subroutines were part of two different runs of createFile then they were
created pointing to different files. By Lemma 8, the two pathnames remained unchanged
since they were created. Hence, they still resolve to the same file if they were created in
the same CreateFile call to the SIMPF'S functionality (and hence belong to the same file
in SIMPF'S), and they still resolve to different files if they were created in two CreateFile
calls (and hence belong to different files in SIMPF'S). O

Approved for Public Release; Distribution Unlimited.
35

Lemma 10 Consider a call Write(fName, ...) from an uncorrupted process that returns
OKAY, and consider the state of the simulated real world at the time when the open system
call in the implementation returns a handle to the final hard link. If at that time fName
s unprotected, but there exists a protected name that resolves to the same file, then the file
itself is unprotected (i.e., there is some role in B with permission to write in it).

Proof: If any root process is corrupted then all files and names are unprotected and we
are done. Assume from now on that no root process is corrupted. It follows that when the
last open system call returned, the name fName was not system-safe (else it would have been
protected), so the Write procedure did not open fName in a system-safe mode. Let U denote
the effective-uid of the calling process. The same argument as above shows that if no U
process was corrupted (when the open system-call returned), the Write procedure could not
have opened fName in a safe-for-U mode. Hence the only two cases that we need to consider
are that some U process was corrupted, or that safe-open opened fName in unsafe mode.

In the former case, recall that fName was not opened in system-safe mode, so a Write
could only succeed when the file is either world-writable or owned by U (and writable by
owner). Either way the file is not protected (since it can be written by the corrupted U
process). It is left to show that the latter case (where the file was opened in unsafe mode
and no U process is corrupted) cannot happen.

Since the file had a protected name it also had a simple protected name, which we denote
fName2 = /dir1/.../dirn/foo. The hard link foo must also be the last hard link in fName,
as opening a file in unsafe mode would fail if the file has multiple hard links. Finally, the
resolution of fName could not have encountered directories unsafe for U before merging into
the simple path fName2, else it would fail. But since no U or root process is corrupted, all
these directories were still safe for U when the open system call returned, hence fName was
protected, which is a contradiction. O

Lemma 11 The view of the environment is identical in the real and ideal worlds.

Proof: We need to show that the answers that the environment sees when interacting
with simpfs over POSIX and the adversary A are identical to what it sees from the SIMPFS
functionality with the simulator S and the same A. Below we will argue about the simulated
real world, since it is an exact replica of the real world.

From the description of the simulator, it is clear than whenever the implementation of
some call returns an error code then the environment will see the same error code in the
ideal world (since this is what the simulator returns to SIMPFS). Also, it is clear that the
results of all the calls that have unprotected names as arguments must be the same, since
the simulator always creates the corresponding files in SIMPF'S on the fly to ensure this.

It is left to show that for operations that have protected names as argument, if they
succeed in the real-world implementation then SIMPEFS will not return an error, and also
that the content of successful Read operations is the same. We begin with error codes: The
cases where the call to AdversaryAction returns OKAY but SIMPF'S returns an error are the
following;:

Approved for Public Release; Distribution Unlimited.
36

e In CreateFile when the filename already exists. By Lemma 8, if a protected filename
exists in SIMPF'S then it also exists in the simulated real world, hence the 1ink system
call would fail and the simulator would not return 0KAY.

e In DeleteName/Read/Write where the name does not exist, or the calling process does
not have permission to delete the name or read/write the file.

Recall that if a name does not exist but the operation in the real world succeeds, then
the simulator creates the corresponding name with the right permissions in the SIMPF'S
functionality before returning OKAY. So the only case that needs to be examined is when
the name does exist (and does not have corrupted manipulators) but the calling process
does not have the permissions to delete, read, or write. By Lemma 8, such names exist
also in the simulated real world, and they remained unchanged since they were created.
Moreover the createFile procedure ensures that the name and file have the same sets
of manipulators/writers in the simulated real world as in the SIMPF'S functionality.
Hence, if the calling process does not have permission to delete/read/write then the
simulated procedure will also fail, and the simulator will not return OKAY.

Next we consider the content of files with protected names. By Lemma 8 this name also
exists in the SIMPF'S functionality. We observe that the last time fName was created in the
SIMPF'S functionality (prior to the successful read system call) could not have been between
the open and read system calls, since otherwise the final 1stat check would have failed and
the Read would not have been successful. Hence the name (and the file) were created before
the open system call.

We now examine the content of the file corresponding to fName since the last time it was
created in the simulated real world. (This was when the temporary name for this file was
created.) For each successful write system call for this file, we designate the beginning of
the next successful read or write system call (for the same file) as “the point where the
write operation ended.” We prove by induction that at the time each write ended, the
content of the file in SIMPF'S was identical to its content in the simulated real world.

We have two cases to consider: either the file is unprotected (i.e., one of the bad roles in
BB belongs to the Writers set), or it is protected. If the file is unprotected then the simulator
would always make sure to adjust its content in the SIMPF'S functionality to whatever it
would be in the simulated real world. We now claim that the last remaining case — where
the file is protected but the name that was used to write in it is not — cannot happen.

If the open system call for the Write operation happened after the name fName was
created in the simulated real world then we meet the conditions of Lemma 10, namely a
successful Write to an unprotected name where the same file also has a protected name (the
protected name is fName). If the open system call happened before the name fName was
created then the temporary name for that file must have still existed at the time, which
was itself protected, and again we meet the conditions of Lemma 10. In either case the file
cannot be protected.

We have shown that the content of the file is identical at the end of every write operation.
Since the open call for the Read happened after the file was created then the subsequent read

Approved for Public Release; Distribution Unlimited.
37

system call returns the content of this file (specifically, the content after the last write system
call), which is the same as the content that SIMPF'S has for that file. This completes the
proof of Lemma 11 and also Theorem 1. U

5.6 Summary

In this work we adapted the Universal Composability (UC) framework to the modeling
of large software systems. Focusing on filesystem interfaces, we described SIMPF'S, which
is a simple filesystem abstraction intended to capture filesystem integrity concerns. We
describe an implementation of this abstraction over real POSIX filesystems and prove that
the implementation realizes the SIMPFS abstraction in the UC sense. SIMPFES is a simple
but useful interface and with a few small enhancements is sufficient to build real applications.

Our work demonstrates that formal security frameworks such as Universal Composability
can also be used beyond the niche of cryptographic protocols. Our modeling of POSIX-
based file systems is the first example of this scale. Our proof implies that it is possible
for applications to enjoy the security assurances of an idealized system interface even when
running over a large complex interface (and even though potential attackers can use the
entire larger interface). Moreover, the composability gurantees of UC allow us to retain this
assurance irrespective of what the application is.

Approved for Public Release; Distribution Unlimited.
38

6 Implementation of a safe Filesystem primitive and
its analysis

In the previous section we used the UC framework to identify a simple file system interface
which was an idealization of a safe way to use the POSIX filesystem interface. In this section
we consider practical realizations of this idea and aim to define practical file system primitives
using the ideas from the previous section. We will further evaluate our implementation on
real systems to evaluate the practicality of our solution.

In this work we take a closer look at the problem of privilege escalation via manipulation of
filesystem names. Historically, attention has focused on attacks against privileged processes
that open files in directories that are writable by an attacker. One classical example is
email delivery in the UNIX environment (e.g., [Mai]). Here, the mail-delivery directory
(e.g., /var/mail) is often group or world writable. An adversarial user may use its write
permission to create a hard link or symlink at /var/mail/root that resolves to /etc/passwd.
A simple-minded mail-delivery program that appends mail to the file /var/mail/root can
have disastrous implications for system security. Other historical examples involve privileged
programs that manipulate files under the world-writable /tmp directory [ope02], or even in
a directory of the attacker’s choice [xte93].

Over time, privileged programs have implemented safety mechanisms to prevent path-
name resolution attacks. These mechanisms, however, are tailored specifically to the pro-
gram’s purpose, are typically implemented in the program itself, and rely on application-
specific knowledge about the directories where files reside. We believe, however, that the
application is fundamentally the wrong place to implement these safety mechanisms.

Recent vulnerability statistics support our position. The US National Vulnerability
Database [nvd] lists at least 177 entries, since the start of 2008, for symlink-related vul-
nerabilities that allow an attacker to either create or delete files, or to modify the content
or permissions of files. No doubt, the vast majority of these entries are due to application
writers who simply were not aware of the problem. However, there are even vulnerabilities
in system programs, which are typically better scrutinized. For example, an unsafe file open
vulnerability was reported in the inetd daemon in Solaris 10 [s0l08] when debug logging
is enabled. This daemon runs with root privileges and logs debug messages to the file
/var/tmp/inetd.log if that file exists. The file is opened using fopen(DEBUG_LOG_FILE,
"r+"). Since /var/tmp is a world writable directory a local unprivileged user can create a
link to any file on the system, and overwrite that file as root with inetd debug messages. A
similar example, related to unsafe unlink operation, is a reported vulnerability in the Linux
rc.sysinit script [resO8] in the initscripts package before version 8.76.3-1. That vul-
nerability could be used by unprivileged users to delete arbitrary files by creating symbolic
links from specific user-writable directories.

In addition to these examples, experiments that we run in the course of this work uncov-
ered a number of (latent) privilege escalation vulnerabilities, where system processes write
or create files as root in directories that are writable by unprivileged system process. In
these cases, a compromise of the unprivileged system process could result in further privilege

Approved for Public Release; Distribution Unlimited.
39

escalation. These vulnerabilities are described in Section 6.5.3.

These examples demonstrate that it is unrealistic to expect every application (or even
every “important application”) to implement defenses against these attacks. We contend
that a system-level safety net would be more effective at stopping these problems than
trying to fix every affected application, or trying to educate current and future generations
of application writers. In a world where applications (and their fragments) are used in
environments that are vastly different from what the application designers had in mind, it is
unreasonable to expect that the applications themselves will distinguish between files that
are safe to open and ones that are not.

In this work we seek a general-purpose mechanism that can be implemented in the file
system or in a system library, that allows programs to open files that exist in an “unsafe”
environment, knowing that they will not be “tricked” into opening files that exist in a “safe”
environment. Specifically, we show how such a mechanism can be implemented over POSIX
filesystems.

In a nutshell, our solution can be viewed as identifying “unsafe subtrees” of the filesys-
tem directory tree, and taking extra precautions whenever we visit any of them during the
resolution of a pathname. Roughly, a directory is unsafe for a certain user if anyone other
than that user (or root) can write in it. Our basic solution consists of resolving a pathname
component by component, enforcing the conditions that once we visit an unsafe node, in the
remainder of the path we will no longer follow symbolic links or allow pathname elements of
‘.., nor will we open a file that has multiple hardlinks. Thus, once we resolve through an
unsafe node, we will not visit nodes that exist outside the subtree rooted at that node.We
describe in Section 6.6.1 a more permissive variant that still provides the same protection
against privilege-escalation attacks.

In contrast with many prior works on filename-based attacks, our work is not primarily
focused on race conditions (such as access/open races [THWS08b, CGJ09]). Rather, we
directly addresses the privilege-escalation threat, which is the main motivation for many
of these attacks. Here we focus on the pathname resolution mechanism, identify a simple
security property that can be met even in the presence of race conditions, and show that
this property can be used to prevent privilege-escalation attacks.

We focus on tightening the connection between files and their names. In most filesystems,
programs access files by providing names (the pathnames), and rely on the filesystem to
resolve these names into pointers to the actual files (the file handles). Unfortunately, the
relation between files and their names in POSIX filesystems is murky: Files can have more
than one name (e.g., due to hard or symbolic links), these names can be changed dynamically
(e.g., by renaming a directory), filename resolution may depend on the current context (e.g.,
the current working directory), etc. This murky relation obscures the semantics of the name-
to-file translation, and provides system administrators and applications writers with ample
opportunities to introduce security vulnerabilities. Our solution builds on the following
concepts:

e [gnoring the partition to directories and subdirectories, we view the entire path as just
one name and examine its properties. We introduce the concept of the manipulators of

Approved for Public Release; Distribution Unlimited.
40

a name, which roughly captures “anyone who can change the outcome of resolving that
name.” In POSIX filesystems, the manipulators of a path are roughly the users and
groups that have write permission in any directory along this path. More precisely,
U belongs to the manipulators of a name if the resolution of that name visits any
directory that is either owned by U or that U has write permissions for.

e Using the concept of manipulators, we distinguish between safe names and unsafe
names. Roughly, a name is safe for some user if only that user can manipulate it.
Specializing this concept to UNIX systems, we call a name “system safe” if its only
manipulator is root, and call it “safe for U” if the only manipulators of it are root
and U. For example, typically the name /etc/passwd is “system safe”, the name
/home/joe/mbox is safe for user joe, and the name /var/mail/jane is not safe for
anyone (as /var/mail is group or world writable).

e Once we have safe and unsafe pathnames, we can state our main security guarantee.
We provide a procedure safe-open that ensures the following property:

If a file has safe names for user U, then safe-open will not open it for U
using an unsafe name.

As we show in the section, this property can be used to ensure that no privilege
escalation via filesystem links occurs. For example, if /etc/passwd is system-safe,
then no process running as root will safe-open this file due to a hard link or symbolic
link that could have been created by a non-root process. In particular, a “simple
minded” mail delivery program that uses our safe-open will be protected against the
attack in the example from above. Also, we verified that this guarantee is sufficient to
protect against the documented vulnerabilities in CVE.

We implemented our safe-open procedure as a library function over POSIX file sys-
tems, and also generalized it to other POSIX interfaces that resolve pathnames such as
safe-unlink, safe-chmod, etc. (cf. Section 6.4). We performed whole-system measure-
ments with several UNIX flavors, and find that system-wide safe pathname resolution can
be used without "breaking” real software. During these measurements we also uncovered
a number of new (latent) vulnerabilities (cf. Section 6.5.3), that would be fixed using our
safe-open.

6.1 Related Work

Much of the prior work on pathname safety has focused on time-of-check /time-of-use race vul-
nerabilities (TOCTTOU) in privileged programs [Bis95, BD96, DH04, BJSW05, THWS08b,
CGJ09]. Our work is not focused on this problem, instead it directly addresses the privilege-
escalation issue that underlies many of these race-condition vulnerabilities: Rather than
trying to prevent race conditions, we modify the name-resolution procedure to ensure that
privilege-escalation cannot happen even if an attacker is able to induce race conditions.

Approved for Public Release; Distribution Unlimited.
41

In early analysis of filesystem race vulnerabilities in privileged programs, Bishop discusses
safe and unsafe pathnames, and introduces a can-trust library function that determines
whether an untrusted user could change the name-to-object binding for a given pathname
[Bis95]. Later, a more formal analysis with experimental validation was done by Bishop and
Dilger [BD96].

Our safe-open function implements a user-level pathname resolver that examines path-
name elements one by one; its structure is therefore similar to that of the access-open
function by Tsafrir et al. [THWS08b, THWS08a]. While their user-level name resolver ap-
plies access checks to each path element in a manner that defeats race attacks, our safe-open
function is not primarily concerned with access checks. Instead, we apply a “path safety”
check to each path element.Our solution could have been implemented using a variant of the
general framework from [THWSO08a, Sec. 7], but that variant would have to be considerably
more complex to deal with issues such as change of privileges or permissions, thread safety,
etc.

In the context of system call introspection monitors for TOCTTOU vulnerabilities,
Garfinkel [Gar03] considered remedies which could also potentially apply to the problem
of unsafe pathname resolution. These remedies include disallowing the creation of symlinks
to files which the calling process does not have write permissions to, as well as denying access
to files through symlinks. As noted in his paper, these solutions can mitigate the problem
but they do not solve it. For instance, they do not address pre-existing symlinks, and fail in
the face of symlinks in intermediate components of the pathnames. In contrast, our solution
directly addresses the underlying problem of unsafe pathname resolution.

Another approach to system call introspection is implemented in the Plash sandboxing
system [Seal. Here, a replacement C library delegates file-system operations to a fixed-
privilege, user-level, process that opens files on behalf of monitored applications and that
enforces a confinement policy. While this approach provides great expressiveness, it would
not be suitable for system-wide deployment as envisaged with our safe-open function. (For
example it is not clear how to address privilege changes by the calling process, or how this
solution scales with the number of processes.)

Addressing filename manipulations is in some ways complementary to dealing with the
“confused deputy” problem: Both problems are used as a vehicle for privilege escalation, and
some aspects of the solution are common, but the problems themselves appear to be different:
For example, the “simple minded” mail-delivery program from above knows that it uses its
root privileges for writing /var/mail/root, so in this sense it is not a confused deputy
(since it is not being tricked into using some extra privilege that it happens to hold). The
problems with UNIX privilege-managing functions were systematically analyzed by Chen,
Wagner and Dean; these authors also provide a more rational API for privilege management
[CWDO02]. Their approach was later extended by Tsafrir, Da Silva and Wagner to include
also group privileges [TSWO0S].

Mazieres and Kaashoek advocate a better system call API that among others allows
processes to specify the credentials with each system call [MK97]. Our safe-open function
could benefit from such features (especially when opening files on behalf of setgid programs,

Approved for Public Release; Distribution Unlimited.
42

cf. Section 6.6.3).

6.2 Names, Manipulators, and Safe-Open

For presentation simplicity, we initially consider only a simplified setting where (a) all file-
names are absolute paths, (b) every filesystem is mounted only once in the global name tree,
and (c) no concurrency issues are present. (The last item means that we simply assume
that no permission changes occur concurrently with our name resolution procedure.) We
discuss relative pathnames at the end of this section, multiple mount points and dynamic
permissions are discussed in Section 6.3.

6.2.1 Names and Their Manipulators

Roughly speaking, a manipulator of a name is any entity that has filesystem permissions that
can be used to influence the resolution of that name. A manipulator can create a name (i.e.,
cause the filesystem to resolve that name to some file), delete it (causing name resolution
to fail) or modify it (causing the name to be resolved to a different file). In the context of
POSIX systems, a manipulator of a path in a POSIX filesystem is any uid that has write
permission in — or ownership of — any directory that is visited during resolution of that
path.See Section 6.6.3 for a discussion about gids.

For example, consider the files /etc/passwd, /home/joe/mbox, and /tmp/amanda/foo
from a common UNIX system. The permissions of the relevant directories are:

drwxr-xr-x root root /
drwxr-xr-x root root /etc
drwxr-xr-x root root /home
drwx------ joe joe /home/joe
drwxrwxrwt root root /tmp
drwxr-xr-x root root /tmp/amanda

Then the only manipulator of the name /etc/passwd is root (since only root can write in
either / or /etc/), and the manipulators of the name /home/joe/mbox are root and joe.
On the other hand, all the users on that machine are manipulators of /tmp/amanda/foo,
since everyone can write in /tmp.The directory /tmp typically has the sticky bit set, which
prevents non-root users from removing other user’s files from /tmp. But it does not prevent
users from moving other user’s files into /tmp. For this reason, everyone must be considered
a manipulator of the directory /tmp/amanda, even though this directory can be removed
only by root.

Moreover, if we had the symbolic links: then the manipulators of /home/joe/linkl are
root and joe, and the manipulators of the name /home/joe/1link2/foo include all the users
on that machine (since resolution of this last name goes through the world-writable /tmp).

We note that this description is “static”, in that it refers to the permission structure as it
exists at a given point in time. Nonetheless, in Section 6.3.2 we show that our solution (which

Approved for Public Release; Distribution Unlimited.
43

is based on this “static” notion) prevents privilege escalation via pathname manipulations
even in settings where the filesystem (and its permissions) can change in a dynamic fashion.
Roughly speaking, this is because in POSIX systems only manipulators of a path can add
new manipulators to it, and no manipulator can remove itself from the set of manipulators
of a path.The last statement depends on the fact that only root can use the chown system
call.

Safe and unsafe names. For POSIX systems, we say that a name is system-safe (or safe
for root) if root is the only manipulator of that name. A name is safe for some other uid
if its only manipulators are root and uid. Otherwise the name is unsafe.

6.2.2 The Safe-Open Procedure

Our safe-open procedure is a refinement of the safety mechanisms used by the Postfix mail
system [Ven] to open files under the world-writable directory /var/mail. The basic approach
taken by Postfix is to verify that the opened file is not a symbolic link and does not have
multiple hard links. This approach works for the special case of /var/mail, but it is not
quite applicable as a general-purpose policy, for two reasons:

It is too strict. There are cases where applications have a legitimate need to open a file
with multiple hard links or a symbolic link.For example, old implementations of Usenet
news kept a different directory for every newsgroup and a different file for every article,
and when an article was sent to more than one group, then it will be stored with
multiple hard links, one from each group where this article appears. Moreover, blanket
refusal to open files with multiple hard links would enable an easy denial-of-service
attack: simply create a hard link to a file, and no one will be able to open it.

It is not strict enough. Refusing to open links does not provide protection against ma-
nipulation of higher-up directories. For example, consider a program that tries to open
the file /tmp/amanda/foo. Even if this file does not have multiple links, it may still
not be safe to open it: For example, the attacker could have created /tmp/amanda/ as
a symbolic link to /etc, and the program opening /tmp/amanda/foo will be opening
/etc/foo instead.

To implement a general-purpose safe-open, we therefore refine these rules. Our basic
procedure is as follows: While resolving the name, we keep track of whether the path so far
is safe or unsafe for the effective uid of the calling process. When visiting a directory during
name resolution, we call it unsafe if it is group- or world-writable, or if its owner is someone
other than root or the current effective uid of the calling process (and otherwise we call
it safe). When resolving an absolute path, we start at the root in safe mode (if the root
directory is safe). As long as the resolver only visits safe directories, we are in a safe mode,
can follow symbolic links or ‘. .’, and can open files with multiple hard links. However, once
the resolver visits an unsafe directory, we switch to unsafe mode, and in the remainder of the

Approved for Public Release; Distribution Unlimited.
44

path, disallow symbolic links or ‘..’, and refuse to open a file with multiple hard links.See

Section 6.6.1 for more permissive variants of this procedure. We note the following about
this solution:

e A safe name that can be opened by POSIX open will also be opened by safe-open:
If a name is safe then the safe-open procedure will visit only safe directories, and
therefore will not abort due to symlinks or multiple hardlinks. Any directory that is
visited during name resolution in open will also be visited by safe-open, and the file
will eventually be opened.

e A file with only one name (which can be opened by POSIX open) will be opened by
safe-open: This is similar to the previous argument, if the file has just one name then
this name cannot include symbolic links and the file cannot have multiple hard links.
Hence safe-open will succeed in opening it if POSIX open does.

e For a file with multiple unsafe names, each of these names may or may not be opened
by safe-open. Note that if many names point to the same file, then there must be
“merge points” where either we have a symbolic link pointing to a directory (or to the
file) or multiple hard links pointing to this file. When safe-open resolves these names,
it agrees to follow these “merge points” if it visited only safe directories before they
occur, and refuses to follow them if it visited an unsafe directory.

For one example, safe-open will agree to open the unsafe name /home/joe/link2/foo
from Section 6.2.1 when running with effective uid of joe, since the “merge point”
occurred while visiting the directory /home/joe/, still in a safe mode. On the other
hand, safe-open will refuse to open this name when running with effective uid of
root, since the directory /home/joe/ is not safe for root.

Implementing this safe-open procedure in the filesystem itself (i.e., in the kernel) should
be straightforward: All we need is to add a check for permissions and ownership on every
directory, updating the safety flag accordingly. Arguably, this is the preferred mode of
implementation, but it requires changes to existing filesystems. Alternatively, we describe
an implementation of safe-open as a library function in user space. This implementation
roughly follows the procedure of Tsafrir et al. [THWS08b, THWS08a] for user-level name
resolution, but adds to it the safe-mode vs. unsafe-mode behavior as described above. We
discuss this implementation in Section 6.4.

Relative paths and openat. The procedure for resolving relative paths (or for imple-
menting openat) is essentially the same as the one for absolute paths, except that we need
to know if the starting point (e.g., the current working directory) is safe or not. In a kernel
implementation, it is straightforward to keep track of this information by adding flags to the
handle structure. Some care must be taken in situations where the directory permissions
change (e.g., via chmod or chown) or when the privileges of the current process change, but
no major problems arise there. Keeping track of this information in a library implementation

Approved for Public Release; Distribution Unlimited.
45

is harder, but even there it is usually possible to get this information, and reasonable de-
faults can be used when the information is unavailable (e.g., after an exec call). Section 6.7
provides more details about relative paths and openat.

6.3 Our Security Guarantee

Recall the security guarantee that we set out to achieve:

If a file has names safe for user U, then safe-open will not open it for U using an unsafe
name.

In other words, if a file has both safe and unsafe names, then safe-open should fail on all
the unsafe names. (At the same time it succeeds on all the safe names, as noted above.) We
note again that as stated, this guarantee applies only to a static-permission model, where
permissions and ownership of directories do not change during the name resolution. However,
as we discuss at the end of this section, protection against privilege escalation attack is
ensured even when the attacker makes arbitrary permission changes for directories that it
owns. The only thing that we must assume is that non-adversarial entities do not induce a
permission-change race against our name resolution.The distinction between adversarial and
non-adversarial entities is inherent in privilege-escalation attacks, since one must distinguish
between privileges held by the attacker and those held by the victim(s).

Our analysis below also assumes that each directory tree appears only once in the file
system tree (i.e. no loop-back mounts, etc.), and that each directory has at most one parent
(i.e., one hard link with a name other than ‘.” or ‘..”).Nearly all contemporary POSIX
implementations either do not allow processes to create additional hard links to directories
(e.g., FreeBSD, Linux) or restrict this operation to the super-user (e.g., Solaris, HP-UX). A
notable exception is MacOS. A short discussion of mount points can be found later in this
section.

We now turn to proving this security guarantee. Consider a file that has both safe and
unsafe names (for a specific uid), fix one specific unsafe name, and we show that safe-open
must fail when it tries to open that name (on behalf of a process with this effective uid).
We distinguish two cases: either the file has just one hard link, or it has more than one.

e Case 1: more than one hard link. Note that when safe-open is called with the unsafe
name, it will apply name resolution while checking the safety of the name as it resolves
it. As the resolution of this name goes through a directory which is unsafe for this
uid, then safe-open will arrive at the last directory in this name resolution in unsafe
mode (assuming that it arrives there at all). Since the file has more than one hard
link, safe-open will then refuse to open it.

o (Case 2: exactly one hard link. In this case, there is a single path from the root to this
file in the directory tree (i.e. we exclude names that contain symbolic links). Below we
call this the “canonical path” for this file and denote it by /dirl/dir2/.../dirn/foo.

Approved for Public Release; Distribution Unlimited.
46

Clearly, every pathname that resolves to this file must visit all the directories on the
canonical path. (Moreover, the last directory visited in every name resolution must be
dirn, since it holds the only hard link to foo.) Since we assume that the file has safe
names for uid, it follows that all the directories in this canonical path must be safe for
uid.

Consider now the directories visited while resolving the unsafe name. Being unsafe,
we know that the resolution of this name must visit some unsafe directory, and that
unsafe directory cannot be on the canonical path. Therefore, during the resolution of
an unsafe name, safe-open must visit some unsafe directory (and therefore switch to
unsafe mode) before arriving at the final directory dirn.

Consider the last directory not on the canonical path that was visited while resolving
this unsafe name. We call this directory dir0. Then it must be the case that safe-open
switched to unsafe mode when visiting dir0 or earlier (because after dirO it only
visited safe directories). Now, since the canonical path begins with the root ’/’, then
safe-open could not descend into the canonical path from above. Hence moving from
dir0 to the next directory was done either by following a symbolic link or by following
“..7, but this is impossible since safe-open does not follow symbolic links or ‘. .” when
in unsafe mode.

)

This completes the proof of our security guarantee.

Multiple mount points. We note that all the arguments from above continue to hold
even when a filesystem is mounted at multiple points in the global name space, as long as
all the mount points are system-safe. However, our security guarantee breaks if we have the
same filesystem mounted in several directories, some safe and others not. In this case, going
down a “canonical” unsafe name for a file, we have no way of knowing that the same file also
have a safe name (via a different mount point). The same problem arises when parts of the
filesystem are exposed to the outside world, e.g., via NFS. In this case, what may appear as
a safe directory to a remote user may be unsafe locally (or the other way around).

6.3.1 Using the Security Guarantee to Thwart Privilege Escalation

The security guarantee that we proved above provides one with an easy way of creating files
that applications cannot be “tricked” into opening using adversarial links: Namely, create
the file with a safe name. For example, if the name /path-to/foo is system safe, then no
process running as root can use safe-open to open the same file with a name that includes
a link that was created (or renamed, or moved to its current location) by a non-root user.
This is because such a link would have to be created in (or moved to) an unsafe directory,
making the name unsafe and causing safe-open (running as root) to fail on it.

This observation can be used to defeat privilege escalation attacks. Consider a file that
needs to be protected against unauthorized access (where access can be read, write, or both).
Hence the file is created with restricted access permissions. To ensure that this protection

Approved for Public Release; Distribution Unlimited.
47

cannot be overcome by the attacker creating adversarial links, we create this file with a name
that is safe for all the uids that have access permission for it. (That is, if only one uid has
access permission to the file then the name should be safe for that uid, and otherwise the
name should be system-safe.)

We now claim that an attacker that cannot access the file, also cannot create a link that
would be followed with safe-open by anyone with access permission for this file. Note that
the attacker must have a different uid than anyone who can access the file.See Section 6.6.3
for a short discussion of setgid programs.

Hence a directory where the attacker can create a link must be unsafe for anyone who
can access the file, and therefore safe-open will not follow links off that directory.

6.3.2 Dynamic Permissions

The argument above covers the static-permission case, where permissions for directories do
not change during the execution of safe-open. We now explain how it can be extended to
the more realistic dynamic-permission model.

Consider a potential privilege-escalation attack, where an attacker that cannot access a
certain file tries to cause a victim program to access that file on its behalf. Notice that in
this scenario it must be the case that the attacker does not have root privileges, and also
has a different effective-uid than the victim. (Otherwise no privilege escalation is needed —
the attacker could access the file by itself.

Consider now a file F' that can be accessed by the effective-uid of the victim (denoted
by U) but not by the effective-uid of the attacker (denoted by U’), consider a particular
execution of safe-open by the victim, and assume that:

(a) at the time that the procedure is invoked, the file F' has some name that is safe for U,
and that name remains unchanged throughout the execution, and

(b) the pathname argument to safe-open is not a U-safe name for the file /' when the
procedure is invoked.

Under these conditions, we show that this safe-open procedure will not open the file F', bar-
ring a concurrent filesystem operation by root or U on pathname elements that safe-open
examines. Put in other words, the attacker can only violate our security guarantee if it can
induce a race condition between two non-adversarial processes (i.e., the safe-open procedure
and another process with uid of either the victim or root). Assume therefore that these two
conditions hold, and in addition

(c) neither root nor U did any concurrent filesystem operation on any pathname element
examined by this safe-open.

We observe that any pathname element that safe-open examines and that resides in a U-
safe directory at the time where the procedure was invoked, must remain in the same state
throughout this safe-open execution. The reason is that being U-safe, only U and root

Approved for Public Release; Distribution Unlimited.
48

have permissions to change anything in the directory, and by our assumption (c¢) neither of
them made any changes to that pathname element.

Imagine now that the state of the filesystem is frozen at the time when the safe-open
procedure is invoked, and consider the way the pathname argument to safe-open would
be resolved. We have two cases: either all the directories visited by this hypothetical name
resolution are U-safe, or some of them are not. The easy case is when all of them are U-safe:
then it must be the case that the hypothetical name resolution does not resolve to the file F’
(or else it would be a U-safe name for F', contradicting our assumption (b)). But it is easy
to show (by induction) that the same directories will be visited also in the actual name
resolution, all of them would be in exactly the same state, and therefore also the actual
name resolution as done by safe-open would not be resolved to F'.

Assume, then, that the hypothetical name resolution would visit some unsafe directories,
and let dir0O be the first U-unsafe directory to be visited. The same easy inductive argument
as above shows that all the directories upto (and including) dir0 are also visited by the
actual name resolution. We now know that the owner of dir0 remains the same throughout
the execution of safe-open (since by assumption (c¢) root did not make any changes in
directories that were examined by safe-open). If the owner is different than U and root,
then safe-open will switch to unsafe mode when it gets to dir0. If the owner is U or root
then it must be the case that the directory was group- or world-writable when safe-open
was invoked (since it was unsafe in the hypothetical resolution), and thus it must still be
group- or world-writable when safe-open examines it (since by our assumption (c¢) U and
root did not change that directory). We therefore conclude that the hypothetical and actual
name resolutions proceeded identically upto (and including) dir0, and they both switched
to unsafe mode upon visiting dir0.

In particular it implies that safe-open arrived at the final directory in unsafe mode, so
it would only open F'if I’ had a single hard link at the time that the procedure returned.
Recall now that by our assumptions (a), this single hard link must be at the end of a U-
safe pathname. But we know that safe-open visited at least one unsafe directory, so its
traversal must have merged back into the safe pathname at some point after visiting dirO.
As in the static case, this must have happened by following a symbolic link or ‘. .’, which is
a contradiction.

Preventing privilege-escalation in the dynamic setting. Once we established the
security guarantee in the dynamic setting, we can show how to use it to prevent privilege
escalation even in a filesystem where permissions can change. In addition to creating the
protected files with safe names, we also need to ensure that (a) we never reduce the write
permissions of a non-empty directory that was group- or world-writable or chown a non-
empty user directory back to root; and (b) we do not change permissions or ownership in
the safe name and do not delete it while there are still programs that have the file open.

It is not hard to see that as long as (a) and (b) do not happen, then the conditions
that we set in our dynamic-system proof hold, and hence no privilege-escalation can result
from adversarial filesystem actions. Seeing that condition (a) is really needed is also easy:

Approved for Public Release; Distribution Unlimited.
49

indeed if the attacker creates an adversarial link in a world-writable directory and then the
victim chmods the directory and removes the world-writable permission, then safe-open will
happily follow the adversarial link. Demonstrating that (b) is needed is a bit more tricky:
Consider for example the file /etc/passwd, which is only writable by root, and consider the
following sequence of operations:

1. Some user program P opens /etc/passwd for read and keeps the handle,
2. The attacker creates another hard link /var/mail/root to he same file,
3. A confused administrator deletes /etc/passwd, and

4. The mail-delivery program uses safe-open to open /var/mail/root, and then writes
into it.

Note that safe-open will succeed under these conditions, since now /var/mail/root is the
only name for this file (and in particular the file has only one hard link). But when the
program P goes to read from its file descriptor, it will see the data that the mail-delivery
program wrote there.

6.4 Implementing safe-open for POSIX Filesystems

We implemented safe-open as a library routine over the POSIX filesystem interface. The
routine performs user-level name resolution, in a similar fashion as the routines of Tsafrir
et. al [THWS08b, THWSO08a|, while adding the pathname safety check in every directory.
That is, the routine goes through each component of the path to be opened, checks for the
manipulators of each directory, and marks a directory unsafe if it has manipulators other
than root and the current process’ effective uid. Once it encounters an unsafe directory, in
the remainder of the path, it does not follow symlinks or ‘. .’, and does not open a file with
multiple hardlinks. A pseudocode description of our implementation is found in Figures 5
and 6.

6.4.1 Race conditions

Our name-resolution procedure is not particularly vulnerable to filesystem-based adversarial
race conditions, in that it would correctly label safe/unsafe directories regardless of con-
current actions of any attacker (as long as the euid of the attacker is neither root nor
the victim’s euid). There are only two points in our code where we need to guard against
check /use conditions:

(A) We must never open a symbolic link. If the 0_NOFOLLOW flag is available then we can
use it for that purpose, but to get get the same effect in a truly portable code we implement
the 1stat-open-fstat-lstat pattern.

(B) The other check/use window in our code is between the time that we check permis-
sions and conclude that we are in a safe directory and the time that we read a symbolic

Approved for Public Release; Distribution Unlimited.
50

/* Resolve a pathname and open the target file */

safe_open(path, open_flags, is_safe_wd)
{
if (path is absolute) {
is_safe_wd = 1; dirhandle = null;
} else {
dirhandle = open(".", O_RDONLY) or return error;
}
return safe_lookup(dirhandle, path, is_safe_wd,
lookup_flags_for_open,
open_action_func, open_flags);

}
/* Call-back to open the final pathname component */

open_action_func(dirhandle, name, is_safe_wd, open_flags)
{

truncate = (open_flags & O_TRUNC);

flags = (open_flags & ~0_TRUNC);

filehandle = openat(dirhandle, name, flags)
or return error;
fst = fstat(filehandle) or return error;
/* lstatat(args) is local alias for
fstatat(args, AT_SYMLNK_NOFOLLOW) */
1st = lstatat(dirhandle, name) or return error;

if (fst and 1lst don’t match) return EACCESS;
check dirhandle permissions again,
and update is_safe_wd if unsafe;

if ('is_safe_wd && name is "..") return EACCES;
if (lis_safe_wd && fst is not a directory

&& fst has multiple hard links)

return EACCES;
if (truncate) ftruncate(filehandle,O)

or return error;

return filehandle;

Figure 5: The top-level safe_open and a utility function open_action_func.

link or open a file or directory. As we explained in Section 6.3.2, this check/use window
is only open to races against processes with the same effective uid as the process calling
safe-open (or root), not to races against an adversarial process trying to escalate privi-
leges. As permission-changing actions by benign processes are quite rare, we believe that
this window does not pose a major threat. We can even check the directory permissions
both before and after reading a symlink (or opening a file or directory) to further narrow
this window (and then this race cannot happen as long as non-adversarial processes do not
revoke write permissions on non-empty directories).

6.4.2 Thread safety

Implementing user-level name resolution requires that we work with handles to directories,
using either the current working directory (which may not be thread safe) or the openat,

Approved for Public Release; Distribution Unlimited.
o1

/* Resolve pathname, invoke action on final component */

safe_lookup(dirhandle, path, is_safe_wd, lookup_flags,
action_func, action_args)

{
if (path is empty) return ENOENT;
if (path is absolute) {
dirhandle = open("/", O_RDONLY) or return error;
1st = result of lstat("/") or return error;
if (1st.owner not in [root, euid] || anyone not in [root, euid] can write)
is_safe_wd = false;
skip leading "/" in path, and replace path by "." if the result is empty;
¥
while (true) {
split path into first and suffix, and replace all-slashes suffix by ".";
1st = result of lstatat(dirhandle, first) or return error;
/* the meaning of "final pathname component" depends on lookup_flags, it has different *
* meaning for open, unlink, etc */
if (first component is final pathname component)
return action_func(dirhandle, first, is_safe_wd, action_args);
if (first component is a symlink) {
newpath = readlinkat(dirhandle, first) or return error;
check dirhandle permissions again, and return EACCES if unsafe;
/* symlink at end of pathname */
if (suffix == null)
return safe_lookup(dirhandle, newpath, is_safe_wd, lookup_flags, action_func, action_args);
/* other symlink */
[newhandle, fst] = safe_lookup(dirhandle, newpath, is_safe_wd, lookup_flags, null, null)
or return error;
} else {
/* first component is not a symlink */
newvhandle = openat(dirhandle,first,0_RDONLY) or return error;
check dirhandle permissions again, and update is_safe_wd if unsafe;
if (!is_safe_wd && name is "..")
return EACCES;
fst = result of fstat(newhandle)
or return error;
if (first component is not a directory)
return ENOTDIR;
1st = result of lstatat(dirhandle, first)
or return error;
if (1st does not match fst) return EACCES;
/* reached the end of readlinkat result */
if (suffix == null) return [newhandle, fst];
}
path = suffix;
dirhandle = newhandle;
if (fst.owner not in [root, euid] || anyone not in [root, euid] can write)
is_safe_wd = false;
¥

Figure 6: The safe_lookup recursive call.

Approved for Public Release; Distribution Unlimited.
52

readlinkat and fstatat interfaces, which are part of a recent POSIX standard [ope0§].
These interfaces duplicate existing pathname-based interfaces but add another parameter, a
file descriptor for a directory. When used with a relative name, these calls now work relative
to the specified directory instead of the current working directory.

The new interfaces are implemented in current Solaris and Linux versions. On systems
without support for the openat family of function calls, we emulate their functionality inside
a synchronized block: Maintaining a handle to the directory currently visited, we store the
current working directory, change directory with fchdir to the visited directory, explore
the next path element (for example, with open or 1stat), then restore the original current
working directory. To make the emulation signal-safe we also need to suspend signal delivery
while in the protected block.

6.4.3 Read permissions on directories

Our user-level safe-open implementation relies on the ability to open all the intermediate
directories (e.g., to fstat them or to use them with openat). Each path component, except
the final one, is opened in a 0_RDONLY mode. For this implementation to work, the process
must have read permission on each non-final component in the path (in addition to the search
permission that is required to look up the next pathname component in that directory).
This is different from the regular POSIX open that only requires search permission on each
directory component.

This restriction is of only temporary nature: a recent POSIX standard [ope08] introduces
the 0_SEARCH flag to open a directory for search operations only, and a future safe-open
implementation can migrate to this.

6.4.4 Opening files without side effects

Upon arriving at the last path element (i.e., the file to be opened), our safe-open im-
plementation may still need to verify that it is not a symbolic link. We again use the
lstat-open-fstat-lstat pattern, but we must guard against potential side-effects of open-
ing the file. For instance, opening the file with the flag 0_TRUNC in combination with either
0_WRONLY or O_RDWR will truncate the file before the safe-open procedure can determine
that it opened an unexpected file. To fix this problem, we must first remove the 0_TRUNC
flag when opening the file, and if no error occurs then call ftruncate on the newly opened
handle before returning it.

Somewhat similarly, if safe-open unexpectedly opens a target which is not a regular
file (such as a FIFQ or a tty port), then the open call could block indefinitely. This can be
addressed only with cooperation by the application: when an application never intends to
open a blocking target then it could specify the flag 0_NONBLOCK.

Approved for Public Release; Distribution Unlimited.
53

6.4.5 Implementing safe-create, safe-unlink, and other primitives

Building on the same ideas, we can implement safe versions of other POSIX interfaces, such
as safe-create for creation of new files, safe-unlink for removing them, etc. For many
of these primitives, the implementation can be almost trivial: follow the same steps as with
safe-open to reach the final directory; in the final step, safe-create creates the file (with
flags 0_CREAT and 0_EXCL), and safe-unlink removes the target which may be a symlink or
a file with multiple hardlinks.Some primitives (such as unlink and mkdir) do not follow a
symlink that appears as the final pathname component; the safe-unlink and safe-mkdir
functions must of course behave accordingly.

Our generalized pathname safety policy is easy enough to express: “when resolving a
pathname through an unsafe directory, in the remainder of the path don’t follow ‘.. " or
symbolic links, and don’t open or change attributes of files with multiple hardlinks.” Ar-
ticulating the exact security properties that you get may take some care. For example, the
security property that you get from safe-create is this: “When called with an unsafe name,
safe-create will fail to create the file if the resulting file could also have a safe name.”

Implementing safe versions of POSIX interfaces with more than one pathname (i.e.,
safe-rename and safe-1link) can be problematic on systems that don’t support renameat
and linkat. The emulation of these functions is complicated by the fact that a process can
have only one current working directory at a time; as a workaround one could perhaps utilize
temporary directories with random names as intermediaries.

Current POSIX standards still lack some primitives that operate on existing files by file
handle instead of file name, but this may change as standards evolve. For example, the
recently-standardized 0_EXEC (open file for execute) flag [ope08] enables the implementation
of a family of fexec primitives that execute the file specified by a file handle.Support for
these is already implemented in some Linux and BSD versions. Based on these primitives
one could implement safe-exec versions that can recover from accessing an unexpected file,
similar in the way that safe-open recovers before performing an irreversible operation. We
note that executing files in unsafe directories is a minefield, and leave the development of a
suitable safety policy as future work.

6.5 Experimental validation

We conducted extensive experiments to validate our approach for safe pathname resolution.
Our goals in these experiments were (a) to check whether existing applications would continue
to work when they run over a POSIX interface that implements safe pathname resolution;
and (b) to see if we can identify yet-undiscovered vulnerabilities related to applications that
follow unsafe links.

6.5.1 Testing apparatus

We implemented our safe name resolution and tested several “live” systems, to see what ap-
plications actually use unsafe links, and for what purpose. To cover a wide range of operating

Approved for Public Release; Distribution Unlimited.
54

systems and production environments, we opted for implementing our procedure in a “shim”
layer between the applications and libc. That is, we built a library that intercepts filesys-
tem calls, and instructed the run-time linker to load it before the regular 1ibc. We used this
to instrument dynamically-linked programs including setuid and setgid programs.While the
LD_PRELOAD environment variable was sufficient to instrument most programs, instru-
menting setuid and setgid programs required additional steps. We stored run-time linker
instructions in /etc/1d.so.preload on Linux, and in /var/1d/1d.config on Solaris; we
modified the run-time linker /1ibexec/1d-elf.so.1 on FreeBSD. This approach makes it
easier to test existing systems, but it may not be able to interpose on calls between functions
within the same library. In addition it is necessary to intercept some library calls not related
to file access, to prevent the accidental destruction of environment variables or file handles
that our “shim” layer depends on.

In the interposition library, we implemented the safe pathname resolution and used it
in the filesystem calls open, fopen, creat, unlink, remove, mkdir, rmdir, link, rename,
chmod, chown, and the exec family. With openat and related functions, we did not im-
plement yet safe pathname resolution with respect to arbitrary directory handles; in our
measurements, such calls were a tiny minority. So far we only instrumented calls that in-
volve absolute pathnames, or pathname lookups relative to the current directory.

We also kept some state related to the current working directory in our library, in order
to implement safe name resolution for relative pathnames. (The same approach can be used
for the directory handles used by openat and related functions, but we did not implement
this yet.) A more detailed description of the implementation and its intricacies is provided
in Section 6.8.

6.5.2 Measurements of UNIX systems

We ran our pathname safety measurements on several out-of-the-box UNIX systems, specif-
ically Fedora Core 11, Ubuntu 9.04, and FreeBSD 7.2 for i386 (both server and desktop
versions). These systems were run on VMware workstation 5 for Linux and Windows hosts,
and on real hardware. We instrumented the top-level system start-up and shutdown scripts,
typically /etc/rc.d/rc or /etc/init.d/rc, and were able to monitor system and network
daemon processes as well as desktop processes.For this instrumentation, we disabled security
software such as AppArmor and SELinux to avoid interference between our instrumentation
and their enhanced security policies. In all of these experiments, we configured our library
to run in a report-only mode, where policy violations are logged but the intended operation
is not aborted. (In fact, following the complete pathname resolution, our library will simply
make the underlying system call on the original arguments and return the result.)

We ran these systems in their out-of-the-box configurations, and also tested some ap-
plications including the Gnome desktop, browsing with several Firefox versions (including
plugins for popular multi-media formats), office document browsing, printing with Adobe
Acroread, software compilation with gce, and software package installation. The vast ma-
jority of these tests passed without a hitch. Most systems and applications never attempted

Approved for Public Release; Distribution Unlimited.
95

an operation that would violate our safety policy, and thus they would have worked just as
well had we configured our safe name resolution in enforcing mode. One notable exception
is the web-server application, discussed in Section 6.5.5.

6.5.3 Latent vulnerabilities

In the course of our experiments we uncovered a number of latent privilege escalation vulner-
abilities. The latent vulnerabilities occur where privileged system processes write or create
files as root in directories that are writable by an unprivileged process. In these cases, a
compromise of an unprivileged process could result in further privilege escalation:

e The Common UNIX Printing System (CUPS) saves state in files job.cache and
remote.cache. These files are then opened with root privileges and with open flags
0_WRONLY | 0_CREAT | 0_TRUNC, in directory /var/cache/cups which is writable by group
1p (on some systems group cups). The CUPS software uses this group when running
unprivileged helper processes for printing, notification, and more. If an unprivileged
process is corrupted, an attacker could replace the state files by hard or symbolic links
and destroy or corrupt a sensitive file.

e Similarly, a latent problem exists with files under directory /var/log/cups on Fedora
Core 11.

e During MySQL startup, the mysqld daemon opens a file hostname.lower-test with
flags 0_RDWR | 0_CREAT as root, under directory /var/1ib/mysql which is owned by the
mysql user. If the mysqld daemon is corrupted later when it runs with user mysql
privileges, an attacker could replace this file by a hard or symbolic link and corrupt a
sensitive file when MySQL is restarted.

e The Hardware Abstraction Layer daemon opens a file with flags 0_RDWR|O_CREAT as
root, in directory /var/run/hald. This directory is owned by user haldaemon, who
also owns several daemon processes. Some of these processes listen on a socket that is
accessible to local users.

e The Tomcat subsystem opens a file with flags 0_WRONLY | 0_APPEND | 0_CREAT as root in
directory /var/cache/tomcat6. This directory is owned by user tomcat6, who also
owns a process that provides service to remote network clients.

e On Fedora Core 11, directory /var/lock is writable by group lock, which is also the
group of a setgid program /usr/sbin/lockdev. System start-up scripts create “lock”
files as root with flags 0_WRONLY | 0_NONBLOCK | 0_CREAT | 0_NOCTTY. If the lockdev pro-
gram has a vulnerability, an attacker could replace a lock file by a hard or symbolic
link and corrupt a sensitive file.

e XAMPP [K.S] (an integrated package of Apache, MySQL, PHP and other components)
on Linux opens files, for error logging, as root in the directory /opt/lampp/var/mysql

Approved for Public Release; Distribution Unlimited.
56

which is owned by the uid nobody. A corrupted process running as nobody can replace
this with a link to any file on the system which would then be overwritten. We note
that XAMPP runs a number of daemons providing network services as the nobody
user, including httpd.

In all these cases, our safe name resolution would protect the system from privilege escalation
if the unprivileged processes are corrupted.

6.5.4 Policy violations

During our ”"whole system” tests we ran into a surprisingly small number of actual safety
policy violations. These turned out to be specific to particular platforms, and were caused
by quirks in the way that directory ownership and permissions were set up:

e On FreeBSD 7.2, the man command could trigger policy violations when a user re-
quested a manual page. FreeBSD stores pre-formatted manual pages under directories
owned by user man (instead of root as with many other UNIX systems). According
to our policy, these directories are unsafe for users other than man. This resulted in
policy violations with pre-formatted manual page files that had multiple hard links.

FreeBSD adopted this approach so that pre-formatted manual pages can be main-
tained by a non-root process. This limits the impact of vulnerabilities in document-
formatting software. We find the benefits of this approach dubious: document format-
ting software still runs with root privileges when the super-user requests a manual
page for software that is not part of the base system. By default, no pre-formatted
manual pages exist for this software category, and this is where the biggest risk would
be.

e The FreeBSD package manager triggered warnings about following ‘. .” when remov-

ing a temporary directory tree under /var/tmp; these could be addressed by a more
permissive policy (cf. Section 6.6.1).

e On Fedora Core 11, the Gnome desktop software triggered policy violations that we
did not experience with other systems. The violations happened when a process
with gdm user and group privileges attempted to follow symbolic links under direc-
tory /var/lib/gdm. This directory is writable by both owner gdm and group gdm.

These policy violations can be avoided with a more sane configuration that uses owner
gdm write permission only. Our “live” measurements show that group gdm is used only
by processes that run as user gdm. With a single-member group like gdm, owner gdm
permission is sufficient, and group gdm write permission is unnecessary. (We found
similar issues with XAMPP for Linux, which installs with directories that have owner
nobody and group root with group write permission.)

Approved for Public Release; Distribution Unlimited.
o7

6.5.5 A web-server application

Most of our measurements were done on bare-bones systems that we instantiated specifically
for the purpose of running the experiments. The only production system that we had access
to was a Debian 5.0 system running an Apache web server and some other services. On
that system we did not attempt a whole-system measurement, but instead only run specific
services under our measurement apparatus. Also on that system most services did not report
any policy violations, with the notable exception of the web server.

The web site on that system is managed cooperatively by several users, where different
users are responsible for different parts of the site, and with no attempt for any protection
between these users. As a result, the web-tree is a mesh of directories with different owners,
many of them writable by the web-administrator group (whose members include all these
different users). Roughly speaking, the entire web-tree on that system is an UNsafe subtree.
Moreover, some dynamic-content parts of the web site make heavy use of symbolic links,
e.g., for using the same script in different contexts.

It is clear that our safe-open procedure will break this web site, but this is more an
artifact of our particular choice of implementation than of the security guarantee that we
set out to ensure. Indeed, in Section 6.6.1 we describe a more permissive implementation of
safe-open that still ensures the same security guarantee, but would not break this web site.
(The idea is that we can follow symbolic links off unsafe directories, as long as we ensure
that the file that we get to at the end does not have any safe names.)

6.5.6 Conclusions

Our experiments seem to indicate that our approach to safe name resolution is both effective
and realistic. On one hand, it fixes all 177 symlink-related vulnerabilities reported in CVE
since January 2008, and also provides protection against the (latent) vulnerabilities that we
identified in our experiments. On the other hand, most systems will continue working without
a problem even if this safety measure was implemented. The few that break can be “fixed”
either by implementing a more standard permission structure for the relevant directories or
by implementing the more permissive variant of safe-open from Section 6.6.1.

We stress that in our experiments, we did not identify even a single example where there
is a legitimate need to open files that would be inherently disallowed by our approach to safe
name resolution.

6.6 Variations and Extensions
6.6.1 A more permissive safe-open

Our safe-open procedure does not follow symbolic links off an unsafe directory, but is not
hard to see that this policy is more restrictive than what we really need for our security
guarantee. Indeed, we only need to ensure that safe-open fails on an unsafe name if the
file to be opened has any other name that is safe. It turns out that a small modification of

Approved for Public Release; Distribution Unlimited.
58

safe-open can ensure the same security guarantee while allowing more names to be opened.

The idea is to keep two safe/unsafe flags rather than one. Both flags begin in a safe
state and switch to unsafe state when visiting an unsafe directory, but one flag is “sticky”,
in that once in unsafe state it stays in this state until the end of the name resolution, while
the other is reset to the safe state whenever we are about to follow a symbolic link with
an absolute path. That is, the second flag is reset to safe state whenever we are about to
return to the root directory.

With these two flags, we can follow arbitrary symbolic links, and can also follow ‘..” as
long as the second flag is in safe mode. When we finally reach the file to be opened, we
abort the procedure only if (a) the “sticky” flag is in unsafe mode and the file has more than
one hard link, or (b) the two flags have different values. (In the second case, the “sticky”
flag indicates that the given pathname was unsafe, while the resettable flag indicates that
as part of the name resolution we followed some safe name to arrive at the file.) The reason
that this more permissive procedure works, is that if a file with only one hard link has any
safe names, then its “canonical” name (i.e., the one with no symbolic links) must be safe.
Moreover, this name must be the one followed by the time that the name-resolution arrives
at the file itself.

As we described it, this more permissive version still refuses to follow ‘..’ when the
second flag is in unsafe mode. This can be easily remedied, however: we simply drop the
restriction on following ‘. .’, and instead just reset the second flag to safe mode after every

¢ Y

6.6.2 An alternative safe-open using extended attributes

On some systems, a much more direct approach is also possible. Recall that the problem
that we try to address is that an adversary without permissions to a file is able to add names
to the filesystem that resolve to that file. If the filesystem supports extended attributes,
then we can avoid this problem simply by including with the file an attribute that lists all
the permissible names for that file. The open procedure, after opening the file, will look for
this extended attribute, and if found it will compare its pathname argument against the list
of permissible names, and will abort if there is a mismatch. For example, the file sudo in
/etc/init.d/ will have a permitted-names attribute listing the names /etc/init.d/sudo
and /etc/rcS.d/S75sudo, and no program will ever be able to open it using any other name.

This simple solution looks quite attractive, but it necessitates proper management of the
additional attribute. In particular, we must decide who may set this attribute (and under
what conditions). For example, when we add to our filesystem a symbolic link: do we need
to modify the permitted-name attribute in all the files under /var/mail/? We leave all these
questions to future work.

Approved for Public Release; Distribution Unlimited.
59

6.6.3 Group permissions

Recall that our safe-open procedure only uses uids to determine safety of directories, which
means in particular that we treat two processes with the same uid as equal and do not try
to protect one from the other. This leaves open the possibility of privilege escalation by
acquiring group privileges: namely, an adversarial process may try to trick another process
with the same effective uid but more group privileges into opening a file that the adversarial
process itself cannot open.

In the work we do not try to protect against such attacks, indeed protection between
different processes with the same effective uid is virtually impossible in most POSIX systems.
We mention that it is not hard to change the safe-open procedure itself so that it considers
the gid rather than the uid for the purpose of determining directory safety, but this would
require a change in the interface, since the calling application would need to somehow indicate
that it wants to use this gid-based safety check instead of the default uid-based check.

We note that our approach for safe name resolution is quite coarse with respect to group
permissions, in that group write permissions always make a directory unsafe for everyone.
This is justified when the directory gid is the primary or secondary gid of multiple UNIX
accounts, since multiple accounts are manipulators. However, contemporary UNIX-es have
many gids that are associated with only one uid (or maybe none at all, e.g. when the
gid is only used by the execution of a setgid program). In general we cannot anticipate all
possible ways that a gid may be activated, and hence we consider the directory unsafe in all
these cases. This may trigger spurious policy violations in some configurations, but in our
experiments we did not find configurations where such policy violations cannot be resolved.

We also note that in conjunction with the more permissive variant from above, this be-
havior lets administrators bypass much of our safety mechanisms: To forgo most of our safety
protections for some subtree (without otherwise changing any permissions), it is sufficient to
make the root of that subtree writable, e.g., by the root group. Assuming that only root
is a member of this group, this will not change any real permissions in the system, but will
make that entire subtree unsafe, and therefore permit opening of the files in it also using
other unsafe names, even ones with symbolic links. (This trick does not help if there are
multiple hardlinks, however.)

6.7 Relative pathnames

When resolving a pathname relative to an initial directory (i.e. the current directory or a
directory handle with functions such as openat), the resolver needs to determine if the initial
directory is safe, before following the same steps as with absolute pathnames (Section 6.2.2).
For this, the implementation needs to maintain safety information about directory handles,
including the implicit directory handles for the current and root directories of all processes.

The per-handle safety information needs to be initialized when a directory handle is
instantiated with functions such as open, chdir or chroot, and the safety information needs
to be propagated when a directory handle is copied with functions such as dup, fcntl, fork,

Approved for Public Release; Distribution Unlimited.
60

or with functions that transmit a file handle over an inter-process communication channel.
Maintaining this information is straightforward in the file system itself (i.e. in the operating
system kernel). We discuss our user-level approach in Section 6.8.

In a simplistic implementation, each directory handle has a static flag that indicates if
the directory is safe. However, additional care is needed with processes that change their
effective uid (for example, a process that invokes the seteuid function, or a process that
executes a file with the setuid bit turned on). As the result of an effective uid change, a
directory that was safe may become unsafe or vice versa. As a further complication, the
safety of a directory depends on the program execution history. For example, a handle for
directory /etc is normally safe for everyone, but that same directory handle would be safe
only for joe if a pathname resolved through a symbolic link under /home/joe.

To account for processes that change execution privilege, we propose that each directory
handle would include a field specifying the uid that the directory’s pathname prefix was
“safe for” when the pathname was resolved. Namely, this field will indicate root if the
directory was reached via a system-safe pathname, it will indicate a single non-root uid if
it was reached via a pathname that has only uid and root as manipulators, and it will
indicate no-one if the pathname had more than one non-root manipulator. When resolving
a pathname relative to an initial directory, one determines the safety of the initial directory
by combining the “safe for” uid from the handle with fresh information about the owner
and writers for the initial directory itself.

6.8 User-level implementation

As mentioned earlier, a kernel-based implementation of safe pathname resolution is straight-
forward: while visiting each pathname element one at a time, maintain a safety flag and
apply the safety policy for following symbolic links, “..”, and for files with multiple hard
links as appropriate. With a kernel-based implementation, maintaining per-handle directory
safety information is also straightforward. This approach is preferable, but only after it has
been demonstrated that safe pathname resolution does not break well-behaved programs.

To demonstrate the feasibility of our pathname safety policy, we chose an approach that
is based on library-call interposition with an in-process monitor. This approach works with
dynamically-linked programs, including programs that are setuid or setgid, and it provides
acceptable performance on Linux, FreeBSD and Solaris systems. We opted against external-
process monitors such as strace or truss: they suffer from TOCTOU problems, they cause
considerable run-time overhead, and they don’t have direct access to the monitored process’s
effective uid which is needed for pathname safety decisions.

As illustrated in figure 7, the monitor is implemented as a library module that is loaded
into the process address space between the application and the libraries that are dynamically
linked into the application. Depending on configuration, the monitor can log function calls
such as open with the effective uid, and can log whether or not a call violates our pathname
safety policy. For the purpose of the feasibility test the monitor does not enforce policy,
but instead passes control to the real open etc. function. The in-process monitor for Linux,

Approved for Public Release; Distribution Unlimited.
61

application
open efc. other
Y)
monitor
y y
library
y y
kernel

Figure 7: In-process monitor architecture.

FreeBSD and Solaris is implemented in about 2000 lines of K&R-formatted C code, comments
not included, plus a small shell script that implements the command-line interface.

Besides interposing on functions such as open that require pathname resolution, our in-
process monitor interposes on additional functions to ensure proper operation of the monitor
itself. For example, the monitor intercepts function calls such as close and closefrom, to
prevent the logging file handle from being closed by accident. The monitor intercepts function
calls such as execve to ensure consistent process monitoring when a new program is executed.
Upon execve entry, the monitor exports environment variables to control run-time linker
behavior and to propagate monitor state, and it resets the close-on-exec flag on the logging
file handle. When the execve call returns in the newly-loaded program, the monitor restores
private state from environment variables before the application’s code starts execution.

To track per-handle directory safety state, an in-process monitor would need to interpose
on functions that copy file handles such as dup or fcntl. Interposition is not necessary with
process-creating primitives such as fork or vfork, since these are not designed to share the
in-kernel file descriptor table or process memory between parent and child processes. On
the other hand, the Linux clone and BSD rfork process-creating primitives are designed so
that they can share the file descriptor table or process memory, meaning that changes made
by one process will affect the other process. This behavior complicates a user-level monitor
implementation, and is not yet supported by our monitor.

Our preliminary in-process monitor maintains a safe/unsafe flag for directory handles
created with open so that it can check programs that use the open-fchdir idiom. The
monitor does not yet check lookups relative to a directory handle. In our measurements,
we found that the openat etc. functions are used by only few programs, and that those
functions are called almost exclusively with absolute pathnames or with pathnames relative
to the current directory. The monitor currently does not propagate the per-process current

Approved for Public Release; Distribution Unlimited.
62

directory and root directory safety state across function calls such as execve. Instead, it
initializes their safety state on the fly at program start-up time. Without modification to
monitored applications, it is not practical for a user-level monitor to track safety flags for
directory handles that are sent over an inter-process communication channel. Fortunately,
such usage is rare.

6.9 Summary

In this section we considered the problem of privilege escalation via manipulation of filesys-
tem pathnames, which effect name resolution in system calls such as open, unlink, etc.
While many privileged programs take measures to protect against such attacks, these mea-
sures are always very application specific. We propose a more general approach of having safe
pathname resolution as part of the filesystem itself or a system library, thereby protecting
all applications by default.

We introduced the concept of the manipulators of a pathname, that include anyone who
can influence the outcome of the pathname resolution. In POSIX these are the users who
either own or can write in any directory visited during the pathname resolution. Using this
concept, we call a pathname safe for U if the only manipulators of the pathname are root
and U. We described a general routine safe-open, ensuring that if a file has safe names
then safe-open will not open that file with an unsafe name, and demonstrated that this
guarantee can be used to thwart filename-based privilege escalation attacks. This is useful
not only for privileged programs that run in known-to-be hostile environments, but also for
programs written by naive developers, and programs that are being deployed in unforeseen
environments with unexpected file permission semantics.

We implemented our safe name resolution routine in a library, using portable code over
the POSIX interface, and performed extensive experiments to validate the applicability of
our solution to current operating systems and applications. We verified that this solution
uniformly protects system against the documented cases of applications and daemons vulner-
able to pathname manipulation attacks, as well as against some new (latent) vulnerabilities
that we uncovered. We also instrumented current versions of Ubuntu 9.04, Fedora Core
11 and FreeBSD 7.2 to run every process through a program which interposes calls to file
manipulation and related calls and checks if the corresponding operation manipulates a safe
pathname. These experiments confirmed that very few existing systems break when used
over our safe name resolution, and the handful of cases where our solution produces false
positives can be handled either by implementing a more standard permission structure for
the relevant directories or by using a more permissive variant of our solution.

Approved for Public Release; Distribution Unlimited.
63

7 IsoVisor:Secure Virtualization

Virtualization has changed the computing landscape from large-scale public cloud infrastruc-
tures to small-scale personal devices, with benefits ranging from improved resource utilization
to improved deployment flexibility. The key underlying primitive that allows virtualization to
be realized is the transparent sharing of hardware resources by multiplexing virtual-machine
requests and demultiplexing hardware responses. In effect this makes a virtual machine (VM)
believe it has exclusive ownership and control over the hardware, all the while the virtual-
ization platform underneath allows multiples VMs to access the shared hardware resources
concurrently. A side effect of virtualization is that the transparent sharing of hardware re-
sources seems like an attractive way to achieve isolation between VMs. If each VM can
operate only as if it is the only workload on the hardware platform, then it is effectively iso-
lated from other VMs, which is especially important when different VMs belong to different
customers, to administrative domains at different security levels in an organization, or to
different tiers of a multi-tier application.

Unfortunately, it turns out that virtualization’s transparent sharing does not provide a
strong level of isolation between VMs. Research has shown that VM co-location can in-
troduce opportunities for “cross talk” due to hypervisor vulnerabilities [Fer07, Orm07] and
side channels that leak information about a virtual machine’s CPU load, cache accesses,
and interrupts [RTSS09, ZJOR11]. Even in non-virtualized environments, side-channel at-
tacks have been used to transfer cryptographic keys between processes sharing the same
CPU [Per05, WL06, KASZ08, AcKKS07, AHFG10, TOS10, ARJS07, Bel05]. Although no
attacks have been reported yet that transfer cryptographic keys between virtual machines,
we expect that these will eventually become possible. Thus, the transparent-sharing property
exhibited by virtualization platforms is insufficient to guarantee isolation.

Distributed virtualized computing resources can be seen as built up by modularly adding
new virtualized resources such as storage, databases, services, and other applications. This
directly lends itself very to the idea of analyzing them modularly and aiming for security
guarantees that are composable. Thus this is a very natural candidate for analysis with
the Universal Composability framework. Our goal is to write down a formal model of iso-
lation and using the UC Framework to establish additional properties to be satisfied by a
virtualization platform and proving their sufficiency for isolation.

Existing security models of isolation cannot be easily translated into specifications for
implementing a virtualization platform. For example, non-interference and separability, al-
though sound security models, are defined on abstract machines, making it quite challenging
to apply them to real systems. Contemporary hardware goes beyond CPU, memory, and
storage, to include a large number of peripheral devices, communication buses, caches, and
memories, each of these with particular interfaces, particular access controls, and particu-
lar operational latencies. Modern hypervisors, which would need to satisfy non-interference
for example, contain significant amounts of code to configure, schedule, and manage the
hardware components. We address this challenge by targeting our requirements to concrete
software and hardware components in modern virtualization platforms.

Approved for Public Release; Distribution Unlimited.
64

Real world Ideal world

Environment Environment
it 1! 11

WM, |- - [VM M, || [(vm
P P P

Figure 8: Correspondence between real-world and ideal-world execution. Workloads execute
in virtual machines VM, on hypervisor and hardware platforms P; hardware boundaries
are shown as heavy lines. In the real world (left) different virtual machines share the same
platform. In the ideal world (right) each virtual machine executes on a dedicated platform.

Our overall approach is illustrated with Figure 8. Intuitively, we wish to achieve in the
real world of shared hypervisor and hardware resources an isolation level that is equivalent
to that of an ideal world where no resources are shared. First, we present a formal model
for isolation in virtualization platforms, which (roughly) ensures that a workload running
in one virtual machine cannot infer or affect the private state of workloads in other virtual
machines except through the external environment.

Next, we derive five requirements (called Loc Separation, Implicit Parameter Separation,
Error Signaling Separation, Conf Separation, and Next Call Separation) which guarantee
isolation when satisfied by a virtualization platform. The five requirements correspond re-
spectively to the absence of explicit information flows, the independence of state of a VM
from the state of any other VM, the independence of errors seen by a VM from the state of
any other VM, the absence of implicit (timing-based) information flows, and the indepen-
dence of execution of a VM from the state of any other VM. To prove that these requirements
are sufficient, we use Universal Composability to show the equivalence of isolation in an ideal
cloud (i.e., non-shared hypervisors and hardware) and a real cloud (with shared hypervisors
and hardware) that satisfies these requirements. Finally we study Loc Separation and Conf
Separation in detail and translate them into practical properties for virtualization-platform
implementations.

Underpinning our approach there is a proof-driven strategy that focuses on the abstract
security properties ensuring that virtual machines are free from entire classes of direct and
side-channel leaks. In contrast, attack-driven approaches defend against specific leaks, for
example by eliminating hypervisor, cache, or CPU sharing [KSRL10, RNSE09, ZJOR11].

In summary, we make the following contributions:

e We formalize the “physically separate hardware” isolation model (called noLeak) for
virtualization platforms, capturing both explicit and implicit (timing-based) informa-
tion flows, and derive five requirements for real-world, hardware-sharing implementa-
tions to achieve equivalent isolation. Furthermore we formally prove in the Universal
Composability framework that these five requirements are sufficient for isolation.

Approved for Public Release; Distribution Unlimited.
65

e We provide what we believe to be the first formal treatment of timing-based side
channels that goes to the root cause of the problem, the scheduling policies of hardware
and software resource arbiters. We analyze both deterministic scheduling policies (for
which we derive an isolation proof) and probabilistic scheduling policies (for which we
define and quantify information leakage rates in certain stateless resource arbiters).

e We analyze the root cause of explicit information flows and demonstrate that access
control (via address translation or access matrices) and correct execution of context
save and restore operations is sufficient to prevent explicit information flows in com-
modity virtualized platforms. Our results cover major virtualization technologies, in-
cluding software emulation technologies such as dynamic binary translation and par-
avirtualization, CPU-supported virtualization, self-virtualizing peripheral devices, and
IOMMU.

e We analyze the root causes of storage side channels and derive distinct requirements
for the isolation of storage side channels induced due to error conditions and due to
sharing of internal platform state.

7.1 Related Work

The concept of isolation between principals has been studied under various aspects since
the beginnings of computer security. Various models from Bell La Padula to Clark-Wilson
to their many derivatives provide different definitions of what it means for a system to be
secure by protecting the confidentiality and integrity of its principals’ data. While it is not
possible to provide a complete overview of the space of formal security models (see Mantel
for a survey [Man03]), we mention several models that are closely related to our isolation
model.

Models of isolation. Goguen and Meseguer introduced non-interference [GM82] as a security
model built on Denning’s secure information flow model [Den76]. Non-interference defines
security as preventing high-privilege data to flow to low-privilege sinks, and thus could
provide a foundation for our definition of isolation. Later extensions of non-interference, such
as generalized non-interference [McC87] and double generalized non-interference (DGNI),
are related to our isolation formalism. DGNI for example requires that the independence
relation between high-privilege principals and low-privilege principals is symmetric, just as
we require. McLean’s separability restricts non-interference to require that a system with
both high-privilege and low-privilege principals can be viewed as composed of two systems,
one with only high-privilege principals and one with only low-privilege principals [Mcl.94].
To the best of our knowledge, ours is the first model that maps a high-level property (i.e.,
isolation) onto a practical hypervisor-based architecture by specifying requirements for the
hardware- and hypervisor-based resource management and access-control components.

In the context of cryptographic systems, Backes and Pfitzmann introduced a definition of
probabilistic non-interference that reflects the dependency on the computational assumptions
of the underlying cryptographic primitives [BP02, BP03, BP04]. In contrast, we consider a

Approved for Public Release; Distribution Unlimited.
66

probabilistic definition of resource arbiters in general-purpose systems and provide a way to
compute the leakage rate for such cases.

Proofs of isolation. Unfortunately formal proofs of isolation are rare for practical systems.
When they do exist, the proofs show that a low-level implementation of a system satisfies
its high-level specification, but do not establish the security properties of the specification
itself. Examples include the sel.4 microkernel work by Klein et al. [KEHT09], which presents
the experience of formally proving the satisfaction of an abstract specification of safety
and deterministic behavior properties, and the NOVA micro-hypervisor work by Tews et
al. [TWVT08], which describes a limited-scope verification using a formal description of IA32
hardware and memory mapped devices. In contrast, we focus both on a natural definition of
isolation (i.e., the desirable security property) and a separate set of requirements (i.e., the
high-level specification), and establish provably sufficient conditions for their equivalence.

Our work is most closely related to separation kernels [Rus82, KZBT91, WSG02, Nat95,
KEH*09, Gre, SK10]. Rushby [Rus82| provides a proof of separability and derives suffi-
ciency conditions for an abstract separation kernel, but excludes covert channels and denial
of service and provides no implementation. In particular, one of our requirements (Loc Sepa-
ration) can be seen as a logical equivalent of Rushby’s definition. Our work provides a proof
of isolation with sufficiency conditions for a general model of shared virtualization platforms
for both direct and side channels.

Covert and side channels. Covert channels and their countermeasures have been studied
since the early days of trusted computing [Lam73, Lip75, Kem02, GM82, KW91, Wra91].
Recently, side channel attacks have received increased attention. One class of these take
advantage of the execution latencies in multicore and hyper-threaded CPUs that are caused
by shared micro-architectural elements such as functional units, caches and branch prediction
units [Per05, WL06, KASZ08, AcKKS07, AHFG10]. To the best of our knowledge, we are
the first to model formally the root cause of side channels present in execution latencies, in
terms of the shared internal state of platform-level resource managers.

Mitigating side channels in an existing system or building a new system free of side chan-
nels has proved to be a hard problem. Many proposed solutions rely on a fixed partitioning of
the hardware resources [KSRL10, RNSE(09], on placing VMs on separate hardware [RNSE09],
or on using the side channel itself to detect unfriendly placement of VMs [ZJOR11]. K&pf
provides a formal approach to addressing side channels [K6p07], and his work is closest to our
present formalization effort. Similar to Kopf, we focus on information flow through observ-
able patterns of requests and grants, but we abstract away the parameters of requests, thus
obtaining a more specific notion of timing side channel, and we only consider non-adaptive
adversaries. There are key differences that we believe make our approach more practical.
We do not constrain the structure of programs executed on the platform, while preserving
the sufficiency of our isolation requirements. Thus, the onus of constructing leakage-free
programs and VMs is shifted to constructing leakage-free virtualization platforms. Addi-
tionally, we are able to establish necessary structural conditions, such as being time and
space multiplexed, on the resource-management components in our setting.

Approved for Public Release; Distribution Unlimited.
67

7.2 Threat model

In this section we try to capture in some detail the precise problem we are attempting to
solve, the assumed attacker model, and the implicit trust assumptions.

7.2.1 Problem Statement

Our target environment is a system consisting of a hardware platform, a hypervisor software
component, and one or more virtual machine software components. The hypervisor could
be a Type I or “bare-metal” hypervisor, or a Type II or a hosted hypervisor. The hardware
provides facilities to store, retrieve, and perform computation with data, as well as to interact
with any number of peripherals for networking, external storage, etc. The hypervisor controls
the access of the virtual machines to the hardware platform. The virtual machines run
arbitrary software that performs private computations over sensitive data and that makes
requests to the hypervisor when it needs to interact with the hardware platform. The problem
of isolation is for the hypervisor to ensure that software in one virtual machine cannot infer
or influence the private state or computation in another virtual machine via their shared use
of the hypervisor and the hardware. We deductively derive requirements to achieve isolation.

We do not consider virtualization that is implemented primarily in software such as OS
API virtualization (e.g., Solaris zones [PT04], AIX WPAR [Mil08], Linux Vserver [* *08],
FreeBSD jails [KWO00]), or CPU emulation (Java [Orallb], QEMU [Bel05]), although our
framework could be applied in those settings, with the appropriate assumptions (e.g., in OS
API virtualization the TCB consists of anything underneath the OS API, including the OS
and the hardware).

7.2.2 Trust Assumptions

We assume that the hardware exposes a well-defined instruction set architecture (ISA) for
each CPU present and a well-defined API for each peripheral present, where “well-defined”
means that the hardware platform correctly implements a known functional specification.
Furthermore we assume the hardware platform has functionality for setting access-control
permissions for particular components of the hardware platform. This access control can be
set such that only the hypervisor code, as defined at boot time, can access those components
and can change the access-control permissions.

7.2.3 Attacker Model

The attacker controls one or more virtual machines, and has full capability within the virtual
machine(s) it controls, can perform arbitrary computation, and can make any number of
requests to the hypervisor. An attacker’s purpose is to infer or modify private state of other
virtual machines not under his control. Since all workloads execute in virtual machines, we
assume the presence of a hypervisor is known and do not concern ourselves with hiding the
hypervisor [GAWF07]. We focus on explicit information flows that are in direct violation

Approved for Public Release; Distribution Unlimited.
68

of hypervisor isolation policies, and on storage-based and timing-based implicit information
flows that result from execution on shared resources.

7.2.4 Physical-channel exclusions

We assume that the system is physically secure. We therefore exclude hardware-level attacks,
such as attacks that give access to current or previous storage content [HSHT08, Gut96] or
that induce hardware errors with radiation or other such mechanisms [GA03]. Similarly,
we also exclude attacks that exploit collocation-enabled via non-digital channels such as
power consumption [KJJ99], emissions of electromagnetic, optical, acoustic or other nature
[AARRO02, Kuh02, ST04|, or temperature drift [ZBA10]. We make the assumption that
virtual machines have no direct access to such non-digital channels.

7.3 Requirements for Isolation

This section presents a definition of isolation based on the equivalence of VM execution
on dedicated and shared platforms. We then deductively derive a set of requirements for
equivalence of execution based on a model for execution on a stored program computer.

7.3.1 Isolation

As captured in Figure 8 our notion of isolation for virtual machines executing on a shared
platform (real world), consisting of a type I or type II hypervisor and hardware, is equivalent
to that of virtual machines on separate platforms (ideal world). Thus there is an ideal world
in which VM are naturally isolated on separate platforms, and a real world in which virtual
machines share a platform. Informally, we say that isolation is achieved when through its
interactions with the platform and the environment, no virtual machine (whether malicious
or benign) is able to distinguish whether it is executing in the real world or ideal world. This
requires that all interactions of a VM with the platform and environment provide the same
outputs in the ideal world and in the real world. In Section 7.4, we formalize this notion of
equivalence using the Universal Composability (UC) framework.

7.3.2 Platform Model

A platform comprising a type I or type II hypervisor and hardware emulates a stored program
computer. We introduce a simple model of a stored program computer to capture the
execution resources available to VM. To model execution latencies which can give rise to
timing side channels, our model includes a global clock.

7.3.2.1 Processing Element A processing element (PE) is an entity that performs
computations. This is an abstraction for hardware and software entities that perform com-
putation such as CPU and disk controllers, virtual devices, hyper-calls, and system calls.

Approved for Public Release; Distribution Unlimited.
69

7.3.2.2 Interface Element An interface device communicates with the environment by
sending and receiving bit strings. The environment is everything other than the platform
and the VM.

Note that a hardware or software device must be partitioned into a processing element
and an interface element under this model. The interface element subsumes the functionality
that is used to communicate with the environment, and the processing element includes all
other functionality.

7.3.2.3 Memory Memory is an execution resource that can store bit strings. We model
memory as a set of locations. This is an abstraction for architecturally-visible memory such
as main memory, CPU and device registers, and disk sectors.

7.3.2.4 Global Clock We model the global clock as a free-running counter that incre-
ments with a period equal to the latency of the fastest operation of the computer system.
For convenience of exposition, we assume that the global clock is synchronized to a global
time source.

7.3.3 Platform Interface for Virtual Machines

Using the execution resources of the platform, we define a platform interface that VMs
use to interact with the platform. The goal of our formalism is to prove isolation against
this interface, i.e., rather than state specific attacker models, as the the capabilities of the
attacker are captured in the platform interface. This allows us to prove the isolation for any
system where VMs (both good and malicious) use this interface.

In this interface, each invocation has an effect on the underlying machine state defined
as follows:

Definition 8 (Machine State) The platform has a set of storage containers in hardware
for bit strings. At any time t, machine state o(t), capturing the contents of all the storage
containers, is defined as a set of tuples (storage container,bit string).

When it is clear which time instant we are referring to, we will drop the functional dependence
on t.

The interface captures two disjoint sets of interactions: those with the platform, and those
with the environment. The first set of interface calls we define are simply an abstraction of
the load operand—execute—store result execution paradigm of a stored program computer.
Given that the entity implementing the platform interface is a simulator for the hypervisor
and hardware, we define three interface calls ReadLoc, Request PE, and Write Loc to capture
the functions of load operand, execute, and store result respectively. All calls update the
machine state o, and return errors when appropriate. Also implicit in the state change is
the advance in the global clock by an amount equivalent to the latency of the operation.

ReadLoc(V M;,loc) : Request to the platform by virtual machine V' M; to read memory at
location loc.

Approved for Public Release; Distribution Unlimited.
70

WriteLoc(V M;, loc,val) : Request by virtual machine V M; to write val to the memory
location loc.

RequestPE(VM;, PE,I) : Request by virtual machine V M; to perform operation I on
processing element PE. The platform has loaded the operands of I as a result of a
sequence of ReadLoc interface calls.

ReadTimer(V M;) : Request by virtual machine V M; to read the global clock.

The remaining calls model communication between the VM and the environment. As
before, all calls update the machine state o, return an error instead of the requested result
as appropriate, and return after the global clock has advanced by an amount equal to the
latency of the operation.

Send(V M;, [E;,val) : Request by virtual machine V M; to interface element I E; to send bit
string val to the environment.

Receive(V M;, IE;) : Request by virtual machine V M; to interface element I F; to receive a
bit string from the environment.

We assume that in both the ideal and real worlds, the VM only receives messages addressed
explicitly to it.

7.3.4 Deriving Requirements for Isolation

This section identifies conditions which ensure that a VM can not distinguish between the real
and ideal worlds. Since a VM can only interact using the interface calls from Section 7.3.3,
indistinguishability implies that the VM observes the same results upon invocation of any
interface call. We observe that the result of an interface call depends only on the machine
state o since a VM must supply the same arguments to interface calls when executing in
either world. Otherwise, the VM does not have a consistent basis for comparing the results
obtained. A sufficient condition for isolation is the following notion.

Definition 9 (Observational Non-interference) A wvirtualization platform satisfies ob-
servational non-interference if for each virtual machine V M; running on that platform there
exists a projection function vy, of the machine state o such that the effect of all interface
calls made by V M; depend only on the projection mwy (o). More precisely, for all states o
and o’ with an equal projection, Ty, (o) = wya, (o)), we have that:

e an interface call made by V M; in state o returns the same result as an interface call
made by V M; in state o';

e if the updated states after a call by VM; are & and &' respectively, then myy, () =
v, (67); and

o forall j # i, mya,(0) = mya,(0). Similarly for o'

Approved for Public Release; Distribution Unlimited.
71

Based on the definition of the interface calls, the results are of four types: (1) result of
a computation, (2) input from the environment, (3) error signals, and (4) global time. We
explore each in turn.

7.3.4.1 Interface Call Result For the read and write operations (ReadLoc and Write Loc),
in the ideal world, each VM works with its own copy of memory locations. Thus in the real
world, equivalence to the ideal world yields the following requirement:

Requirement 12 (Loc Separation) Letval be the quantity returned by ReadLoc(V M;, loc)
at time t. If there was a previous write to loc by VM;, then the immediately last write was
Write(V M;, loc,val). Else if loc was initialized at the time of introduction of V- M; then it
was initialized to the value val. If there was no previous write nor initialization, val is the
constant indeterminate value L.

RequestPE(V M;, PE, I) requests processing element PFE to perform operation /. The
input parameters to such a call are either from memory locations written to by the virtual
machine V M, addressed by the previous discussion on Loc Separation or they are implicit
parameters derived from the internal state of the platform. We observe that the implicit
parameters are updated as a result of operations performed by the platform comprising (1)
operations arising from interface calls made by VMs, and (2) internal operations disjoint from
operations used to service interface calls. Operationally, the values of the implicit parameters
of a RequestPE call are a function of the sequence of interface calls from the VMs and the
sequence of internal operations of the platform. To provide observational non-interference,
we require implicit parameters to be completely described by my (o) for all VMs V M;:

Requirement 13 (Implicit Parameter Separation) For any virtual machine V- M;, pro-
cessing element PE, operation I, and time t, if the interface call RequestPE(V M;, PE, I)
at time t evaluates using an implicit parameter p, then the value of p depends on my (o)
only.

7.3.4.2 Error Signals FErrors signaled by interface calls are either due to hardware
faults, which are outside the scope of this work (see Section 7.2), or those that depend
on the input parameters of the interface calls and the internal platform state. Using an
analysis similar to RequestPE we state the following requirement:

Requirement 14 (Error Signaling Separation) For all virtual machines V- M;, time t,
and any interface call C by V M;, the value of any error signaled depends on my (o) only.

7.3.4.3 Interface Call Latency The execution of any interface call requires execution
resources from the platform. Each execution resource of the platform is associated with one
or more entities that perform the arbitration between concurrent requests for that execution

Approved for Public Release; Distribution Unlimited.
72

resource. The arbitration functionality is normally implemented by the schedulers, alloca-
tors, and deallocators; examples include the instruction scheduler in an out-of-order CPU,
the cache controller, and the VM scheduler within a hypervisor. Schedulers usually grant
access to a resource for fixed time periods (e.g., a process scheduler grants access to a CPU
for a fixed time slice), and resource managers grant access to a resource for an open-ended
time period and then later revoke it (e.g., a cache manager grants access to cache lines and
then revokes it by evicting the VM’s data). Going forward, we will use the term resource
arbiter to refer to both schedulers and resource managers and more generally to any entity
that arbitrates between concurrent requests to execution resources.

Associated with every resource arbiter and request is an arbitration latency which is
defined as the time that elapses from the instant the request is submitted to the arbiter to
the instant the arbiter grants the resource requested. Note that the latency of an interface
call is the sum of the execution latency of the sequence of operations required to evaluate
the interface call and the arbitration latencies induced by all resource arbiters that grant
execution resources to evaluate the operations of the interface call. The latency of evaluation
of an interface call depends upon its input parameters and the resulting operations to be
executed. Since the operations to be executed are the same in both the ideal and real worlds
and the other requirements ensure that the inputs are the same, the only difference could be
arbitration latencies. Thus we state the following requirement.

Requirement 15 (Conf Separation) For all time t, the arbitration latency induced by
every resource arbiter involved in granting execution resources for the evaluation of an in-
terface call C, depends only on my (o).

7.3.4.4 Serialization of Interface Calls Finally, it has to be ensured that the sequence
of interface calls by a VM depends on its own execution only. Operationally, the next
instruction of the executing VM is pointed to by the program counter in the CPU, the
updating of which depends on some combination of the address of the currently executing
instruction and the execution of the instruction itself. Hence the integrity of this operation
ensures that the next call depends on the execution context of the VM itself. Formally, we
abstract this requirement as follows:

Requirement 16 (Next Call Separation) For all virtual machines V M;, time t, and
any interface call C" by V' M;, the next interface call of V- M; depends on mwy (o) only.

7.3.5 Our Condition for Isolation P,
We now define our requirement for isolation and summarize.

Definition 10 (Pi,) XS We denote by P, the property that there exists a projection func-
tion my, for each VM V M;, such that the conjunction of the Requirements 12-16 holds.

Requirement 12 addresses explicit information flows, Requirements 13 and 14 cover stor-
age side channels, and Requirement 15 covers timing side channels. Requirement 16 ensures

Approved for Public Release; Distribution Unlimited.
73

equivalence of control flow of VM executions in both the worlds. The next section estab-
lishes that these requirements yield provable isolation and in Sections 7.5 and 7.6 we perform
further analysis of Requirements 15 and 12 respectively.

7.4 Proof of Sufficiency

This section develops a proof for isolation in a virtualized environment. We use the Universal
Composability (UC) framework [Can] to model provable isolation as this framework allows
us to assert security properties with the guarantee that they will be preserved when the
system is arbitrarily composed with other systems. Further UC allows us to reason about
the security of the interface i.e. isolation properties which will hold when principals (virtual
machines), both benign and adversarial, use the platform interface. This is preferable to
traditional approaches which focus on specific adversarial models. We start with an outline
of the UC Framework and use that to specify a strong model of isolation and show that the
requirements captured by P, are sufficient to achieve isolation in this model.

7.4.1 Isolation in the UC Framework

In the UC framework we can precisely define what we expect as isolation guarantees from
a platform. The ideal world specification will be one in which each VM executes within its
own platform and with its own copy of all resources. The real world is one in which multiple
VMs execute within one platform and share a common set of resources. This is depicted in
Figure 9.

The platform receives a set of VM images at the outset, one corresponding to each VM,
and then just goes on executing them on its own. The only external interfaces are then
the Send and Receive to the adversary A, which also communicates with Z. A technical
point here is that the platform interfaces to the VMs as outlined before is not available to
the environment as is usual in the traditional UC models. So the environment is unaware
of the details of the sequence of platform interface calls by the VMs. All it can do is to
introduce the VM images. In the UC model, the platform has the following interfaces to
the environment Z, and the adversary A. (We omit the session ids [Can| here for ease of
presentation. They can be easily added and would be needed for composition results):

IntroduceVM : In the real world, the platform receives a set of virtual machine images
corresponding to VMs V My, --- | VM, from the environment Z, and writes the images
to the logical locations referred by the addresses in the VM’s image. Some of these
VMs may be corrupt and can send potentially useful information to the adversary A.
Next, the platform sets the global timer to 0, and starts servicing the interface calls
for all the VMs at time 0.

In the ideal world, there is a “demultiplex” step at the outset, where individual virtual
machine images are sent to exclusive platforms. In this world, all the platforms set
the global timer to 0 at the same time and for each V' M;, the corresponding platform
starts servicing the interface calls at time 0.

Approved for Public Release; Distribution Unlimited.
74

Real World Ideal World

Environment Environment
IntroduceVM A Y IntroduceVM A
Demultiplexer
U Y - —— = = = =] L — — Y
| -y | | Y Y |
: VM, v, || : VM, v, ||
| |
: P | A fr P <
| 1 | 1
_—em o o — - _— e - Ao o
Y - Y Y. .
Send/Receive Send/Receive

Figure 9: The two-world model for defining isolation in the UC framework. P denotes a
platform consisting of a hypervisor and a contemporary computer.

Send : On a Send interface call from a VM, the message is sent to the adversary A.

Receive : On a Receive interface call from a VM, the message received from A for the VM,
is returned to the VM.

We now define the ideal functionality Fp, the execution of VMs on exclusive platforms
which are naturally isolated by construction, and the real world implementation Ilp, the
execution of VMs on a shared platform.

Definition 11 (Ideal Functionality) The ideal functionality Fp is an execution where
every VM gets an exclusive set of resources which are accessed through an exclusive platform.

Definition 12 (Real-World Design) The real-world design I1p is an execution where all
the VMs share a set of resources which are accessed through a shared platform.

This section describes a proof where we show how the real-world platform provably
realizes the idealized platform. First we use the UC framework to define when a platform
achieves isolation.

Definition 13 (Isolation) A platform P achieves isolation if the real-world design Ip,
with the given platform, securely realizes the ideal functionality Fp, with the same platform.

We show that the condition P, defined in Section 7.3.5 is sufficient to provably achieve
isolation.

Approved for Public Release; Distribution Unlimited.
75

Theorem 2 If a platform satisfies Pis, then it achieves isolation.

Proof: We describe the outlines of a proof in the UC framework of the equivalence of the
idealized platform with exclusive copies of resources with the real world platform providing
access to shared resources. For this we have to show that the environment can not distinguish
between the two models given any sequence of adversarial actions in the real world. That is
we have to show that any attacks that are feasible in the real world can be simulated in the
ideal world. Formally, we have to show that for any adversary A interacting with I1p, there
exists a Simulator S interacting with Fp, such that the environment is not able to distinguish
between the two interactions. Since we have abstracted all the external interactions through
the Send and Receive interfaces we have to argue that the transcript of values in any sequence
of Send and Receive will be the same in two cases.

At the outset, the environment uses the IntroduceVM call to send all the VM images
corresponding to each of the VMs - in Fp they go to the exclusive systems and in I1p they
go to the shared system. After this note that the interfaces to the simulator S in the ideal
world and the adversary A in the real world are exactly the same. Thus the simulator can
simply replicate the actions of the adversary. In particular, when the simulator S receives
a message (Send, VM, msg), it does exactly what the real world adversary does. Similarly
it sends messages to individual platforms through the message (Receive, VM ;, msg) exactly
when A does.

Given this simulation strategy to prove equivalence we have to prove by induction over
time that the value of each Send will be the same in both worlds, at the same time, con-
ditioned on the prior values of Send and Receive messages being the same. Observe that
“corrupt” VMs may communicate useful information to A using the Send and Receive in-
terfaces of the platform, but A does not have any additional interface to communicate with
the platform or with any VM executing in the platform after the VM images of the VMs are
introduced. Therefore, we have to prove that the transcript of communication to and from
the adversary remains the same in both the ideal and real executions.

To prove that the network transcripts are equivalent, we observe from the interfaces that
any message sent out by a VM depends on only the following: (i) values that it reads from
its logical locations, (ii) results or errors returned by execution of operations, (iii) values
received by it from the network, (iv) values returned by ReadTimer accesses. (v) sequence
of the interface calls by the VMs. We prove by induction on time, that if the platform
satisfies P, then these values are identical for both worlds.

The base case of the induction is satisfied as follows: (i) The values at the logical locations
for each VM are either from the VM image itself or initialized to L. (ii) No operation has
been executed. (iii) There is no message received from the adversary yet. (iv) The VMs
start at the same time in both worlds. (v) No operation has been executed. Observe that
(i)-(v) are true in both the worlds at time 0.

Let the machine state in the real world be denoted 0" and the individual machine states
in the ideal world be denoted o for each VM V M;. The base case establishes that for all
VMs V M;, wyar (07%(0)) = myar, (049 (0)).

7

real

Approved for Public Release; Distribution Unlimited.
76

So now assume the induction hypothesis, that up to time ¢ on the global clock in both
the worlds, for all VMs V M;, mya, (07 (t)) = myay, (099 (t)) and that all the items (i)-(v)
are observed identically in both the worlds. We show that at time ¢ + 1 on the the global
clock, for all VMs V M;, mya (07 (t + 1)) = myas, (0@ (t + 1)) and that (i)-(v) are still
identically observed at at ¢ + 1 on the global clock. Note that the global clock progresses in
lock step in all the platforms in the ideal world.

Suppose the concurrent interface calls are Cj,,Cy,, -+ by the VMs VM, ,VM,,,--- in
the real world at time ¢. Consider any of these VMs VM, . By Next Call Separation,
the call (i, depends just on v, (o7eel(t)), which is equal to TV M, (ajdl(t)). By Conf

Separation, the number of clock steps elapsed after the last call by VM, just depends on
TV M, (omeal(t')), where ' < t is the time at the last interface call. By induction hypothesis,

VM, (omea(t)) = my M, (/e (")). Hence the latency observed would be the same in both

worlds.

Hence, in the ideal world, the same interface call comes up in the exclusive platform
for VM, at the same time. Then since P, is a sufficient condition for Observational Non-
interference, we have (i) the results of the calls would be the same in both the worlds. (ii) the
updated states for the VMs VM, would satisfy: myay (07(t + 1)) = myay, (07 (t + 1)),
(iii) for all other VMs VM;, myay, (07 (t + 1)) = myar, (07 () and myay, (0%t + 1)) =

J

Ty, (017 (t)). Hence we will have for all VMs VM;, my g, (07N (t+1)) = myag, (0% (t+1)).
0

7.5 Formal Model of Conf Separation

In this section we consider the property of Conf Separation and investigate how one can
achieve it in a real system. Towards this goal, we model the resource arbiters (i.e., sched-
ulers, resource managers) in a hypervisor as deterministic finite-state systems, which form a
suitable abstraction for many many popular classes of scheduling algorithms such as FIFO,
priority-based, etc. Using our model we address the question of when and how one can
achieve Conf Separation and more generally whether one can quantify the leakage in timing-
based side channels.

7.5.1 Deterministic Finite-State Models of Resource Arbiters

In our model of resource arbiters, resource grants are made to VMs depending on the current
state and the current input to the resource arbiter. This reflects the fact that in practice
almost all resource arbiters are stateful where the state is reflective of all the pending requests
and the particular policy. Our resource arbiters are similar to Mealy machines [Koh79],
transitioning from state to state and producing outputs (i.e., resource grants) on the way.
For simplicity, we do not model the details of the requests such as arguments, only whether
there is a request.

Definition 14 (Deterministic Finite-State Resource Arbiter) A deterministic finite-
state resource arbiter (DFSRA) M is a tuple (P,1,0,%, so,T) where:

Approved for Public Release; Distribution Unlimited.
7

e P is a finite set of VMs denoted { Py, Py, -- -},

o [= 2F is the input alphabet, where an input i € I denotes a set of concurrent requests
from zero or more VMs,

O = 2F is the output alphabet, where an output o € O denotes concurrent grants to
zero or more VMs,

Y is a finite set of states {si, S92, },

Sg € X is a the start state, and

T is the transition function T : ¥ x I — 3 x O, which takes a current state and a set
of requests as input and produces a new state and a set of grants as output.

States typically depend on past requests which may be queued, attributes about the queued
requests and their corresponding VMs, and other such features. In this model an input
trace is a sequence of concurrent requests (possibly empty) from VMs denoting step-wise
temporal progress. Similarly, an output trace is a sequence of concurrent grants to VMs.
For any request from an individual VM, the arbitration latency for the request is the number
of steps between the request and the next grant to the same VM.

We define a execution trace generated by input trace Z € I*, and we write execy(Z) € O*,
as the output trace obtained by running the DFSRA on the input trace Z, starting from the
start state sg, and following the states produced by the transition function 7.

7.5.2 Common Resource-Arbitration Policies

We illustrate the expressibility of our DFSRA model by describing three common resource
arbiters in our model, a priority-based scheduler, a first-in first-out (FIFO) scheduler, and
a time-division multiplexing (TDM) scheduler. For each example, we assume that there
are N requesters labeled Py through Py_; which contend for a single resource and that the
resource arbiter can make use of a queue of length [to track any resource requests that are
not immediately granted.

7.5.2.1 Priority-based resource arbiter Our simple priority-based resource arbiter
always satisfies the highest-priority request and queues ungranted requests. The requesters
are completely ordered by priority, with Py having the highest priority and Py_; the lowest.
The states of the resource arbiter are the requesters in the request queue at any given point
with the start state as the empty set (). If needed, we could additionally have an error state
1.

The transitions are defined to reflect priority-based arbitration. Let the current set of
requesters in the queue be () and let P’ be the set of requesters requesting at this time. The
resource arbiter simply allocates the resource to the highest priority requester P in Q U P’
and queues all other requests. The resulting state after the transition is the state labeled

Approved for Public Release; Distribution Unlimited.
78

with QU P’ — {p} Variants could transition to error state if requesters already in the queue
make requests.

7.5.2.2 First-in first-out (FIFO) resource arbiter Our FIFO resource arbiter can
queue multiple requests from the same requester and further, it waits a minimum of one step
before granting requests. The states of the FIFO DFSRA are the requesters in the request
queue, of size [, and are viewed as ordered sequences to reflect the order of requests. The
number of states is the number of possible sequences, that is, 1 + N + -- -+ N! = N;_ll_l.
If the current state reflects the sequence o of requesters and the current input is from
the subset P’ of requesters, FIFO resource arbitration is simple to define. If the size of o
and the size of P’ together is less than [+ 1, we grant the resource to the requester at the
head of ¢ (if not empty). The resulting state o’ dequeues this element and adds elements of

P’. As before errors can be handled by transition to an error state.

7.5.2.3 Time-division multiplexing (TDM) resource arbiter The last example is
a time-division multiplexing resource arbiter which assigns each requester a time slot in a
periodic manner and grants requests to a requester exclusively in its slot. If the requester
has no outstanding request during its time slot the TDM resource arbiter makes no grants.
For each i, let requester P; be alloted time slot ¢ with periodicity IN. States are labeled
(r, @), where r is the current slot number between 0 and N — 1 and @ the queued requests.

If the current state is labeled (r, @) and P’ is the set of requesters requesting at this time,
the resource arbiter acts as follows: If P,, the requester alloted this slot, is in @ U P’ then

it is granted the resource else no requester is granted the resource. The resulting state is
labeled (r + 1 mod N, P"UQ — {P,}).

7.5.3 Conf Separation for Deterministic Finite-State Models

In this model, we can be assured of Conf Separation, or no timing side-channel leakage, only
if the sequence of requests granted to any VM by the resource arbiter only depends on that
VM’s own input sequence. The rest of this section formalizes this intuition. We define the
projection of resource arbitration algorithms to individual VMs i.e. the resource arbiter’s
behavior assuming that there are no requests from other VMs. Similarly, we can define the
product of several individual resource arbiters as the single resource arbiter which jointly
simulates the behavior of all the component arbiters if there are enough resources. The key
result we are able to show is that Conf Separation is achieved only when all resource arbiters
are equivalent in their input-output behavior to the product of their projection to individual
VMs.

This section describes conditions under which resource arbiters can ensure that no infor-
mation leaks due to arbitration decisions. From the perspective of a single VM, there is no
interference or leakage of information from other VMs, if and only if whenever the VM makes
identical sequences of requests the resource arbiter behaves exactly identically. This strong

Approved for Public Release; Distribution Unlimited.
79

requirement ensures that the VM is not able to infer anything about other VMs irrespective
of what other VMs are running on the system thus achieving Conf Separation.

First we define non-interference, a necessary and sufficient condition for a DFS resource
arbiter to achieve Conf Separation. Intuitively, this says that the projection of the execution
trace from the DFSS for a particular VM depends only on the projection of the input trace
to the requests of the particular VM. To formalize this intuition we need the following
definitions.

Definition 15 (Projection of a Trace) Given an input trace Z(= (iy,is,---)), the pro-
jgection wp, () with respect to a VM P; is the sequence (i,ib,---) where i}, = i, N {P;}.
Similarly we can project output traces.

A resource arbiter is non-interfering with respect to VM P;, if whenever P, makes an
identical sequence of requests, the resource arbiter produces an identical sequence of request
grants/denies for P;. Note that two sequences are identical if they contain the same requests
(or grants) in the same relative order and with the same inter-arrival time.

Definition 16 (Non-interference) A resource arbiter M is non-interfering with respect
to a VM P; if the following property holds true:

\V/Il,:z'g c I". Wpi(Il) = Wpi(:z'g)
= 7p(execp(1h)) = wp, (execp (Z2)) (1)

A resource arbiter is non-interfering if it is non-interfering with respect to all VMs.

Consider a resource arbiter which is non-interfering with respect to two VMs P, and P,
contending for a single resource, where both VMs make a request at some time instant k.
Consider the resource arbiter output on the projections mp, (Z). Since the resource arbiter
is non-interfering with respect to Py if it grants to P, at time k on 7, (Z) then it must
do so on input Z. This is also simultaneously true for VM P,. Thus a non-interfering
resource arbiter must make the same grants at the same time irrespective of which VMs
make requests. For such resource arbiters, the outputs at each step can simply be obtained
by looking at the outputs made on projections. In the rest of the section we show formally
that a non-interfering resource arbiter is equivalent to the one obtained by composing its
per-VM projections.

We extend the definition of projection with respect to a VM from a trace to a DFS
resource arbiter by restricting the resource arbiter to only consider inputs from that VM.

Definition 17 (Projection of a Resource Arbiter) The projection of a resource arbiter
M = (P,1,0,%,50,T) on a VM P; is resource arbiter M' = wp (M) = (P',I',0", %, s, T")
where:

o The set of VMs P’ is just {P;}, set of inputs I' and outputs O' are each just 2F".

Approved for Public Release; Distribution Unlimited.
80

o The transition function T' is constructed from T by removing all transitions (s1,1) —
(s2,0), where i contains requests other than from P;.

After removing unreachable states, if there is a remaining transition with a grant to a VM
other than P; then the projection is not well-defined, since then there is a grant to a VM who
never makes a request.

The product of two resource arbiters is one that jointly simulates the behaviors of the
component resource arbiters when possible.

Definition 18 (Product) Given two resource arbiters My = (Py, I, 01,34, so, T1) and M,
= (P, 15,049,305, tg, 1), with disjoint sets of VMs, we define their product M; x My =
(P, 1,0,%,1,T), as follows: The set of VMs P is the union of the set of VMs Py U Py
The input set I and the output set O are both the power set of P. The set of states %
is the product of the two sets of states X1 X Y. For all transitions (s1,1) — (s2,0) in
Ty and all transitions (t1,i") — (t2,0") in Ty, we introduce the following transition in T':
((81, tl),’é U Z/) — ((82, tg), oU O/).

We define the equivalence of two resource arbiters purely in terms of their input-output
behavior. In particular, it requires nothing about the internal structure of the states and
transitions themselves. Two equivalent resource arbiters may have completely different in-
ternal policy, states and transitions.

Definition 19 (Equivalence) Two resource arbiters My and My are equivalent, written
My = Ms, if for any input trace I, execyy, (Z) = execy,(I).

The following is the central result of this section and captures precisely when resource arbiters
are non-interfering.

Theorem 3 A resource arbiter M = (P,1,0,%, sy, T) for VMs P = {Py,---, P} is non-
interfering with respect to all the VMs in P if and only if M = wp (M) X --- X 7wp, (M) where
all the projections have to be well-defined. Further the above equivalence can be checked
algorithmically.

Proof: Let M’ = 7p (M) x --- x wp, (M). Since a product resource arbiter is, by defi-
nition, non-interfering with respect to each of the VMs, If M is equivalent to M’ then it
is non-interfering. To see the other direction, we first note that for the projection trace
Z; = np,(Z), we have execyr(Z;) = execr, (ar)(Z;) since the projection trace has requests only
from P;. Let the composition ‘|" of two traces (iy,is,---) and (ji,J2,--) be the sequence
(11U j1,42 U ja, - -). Note that, by definition, M outputs execy, (n)(Z1) | -+ | execr, (ar)(Zk)
oninput Zy | --- | Zy. If M is non-interfering we have 7p, (execy (7)) = mp,(execyr(Z;)) be-
cause Z and Z; agree on the inputs for F;. Therefore 7p, (execy(Z)) = mp,(execy, (mr)(Z;)) =

Approved for Public Release; Distribution Unlimited.
81

eTECrp, (M) (Z;). Since this is true for all VMs P;, we have

comp (exeey (2)) |-+ - | mp, (execn (Z))
= eTeCrp (M) (Z1) |-+ -] €T€Cry (M) (Zy)
=execyy (Iy |-+ | Zy)

coexecy (I) = execyy (T)

As the above holds for any input sequence Z, M = M’.

Since a resource arbiter as defined in Definition 14 is a Mealy machine [Koh79] over input
alphabet I, output alphabet O, set of states ¥, state transition function 7', and start state
S0, there is a simple algorithm to check if two resource arbiters are equivalent based on the
standard minimization procedure for Mealy machines [Koh79] which produces a minimal,
equivalent resource arbiter. To determine equivalence, two resource arbiters M; and M; are
reduced to their minimal equivalent resource arbiters and then we can determine if there is
an isomorphism between the two minimal resource arbiters. O

7.5.4 Non-Interfering Resource Arbiters

Consider a non-interfering DFS resource arbiter M which handles requests from two VMs
P, and P, contending for a single resource. By Theorem 3, M is equivalent to M; x M,
which are the projections to P, and P; respectively. We show that if M is not a time-division
multiplexing (TDM) DF'S resource arbiter then there will be a state in which M must make
grants to both VMs which violates availability.

States in M are of the form u = (s,t) where s and ¢ are states in M; and Ms. wu is
reachable in M if and only if there are paths of length k to reach s in M; and ¢ in M. Since
there is exactly one resource, there can be no reachable state (3,%) in M where § grants P,
in M, and t grants P, in M, on any outgoing edge. Thus the set of all possible path lengths
from sy to § and the set of all possible path lengths from t, to ¢ are disjoint.

The set of all possible path lengths from sy to § is the union of a finite set and a periodic
set with period equal to the least common multiple (lem) of all possible simple cycle lengths
in the subgraph induced by all the nodes in any path between sq and §. Thus if L is the lem
then if there is a path of length k to § then there is also a path of length k£ + L. This is also
similarly true for ¢ in Ms. If the periods are L; and L, respectively, then consider the sets
as periodic sets of period L = lem(Lq, Ly). Then since M can allocate only one resource at
a time, in any period of length L, VMs P, and P, can be granted only at pre-determined
fixed slots. Thus M is a TDM DFS resource arbiter!

For m VMs and n resources, where m > n, the constraint is that there is no integer
k > 0, such that there are more than n of the projection resource arbiters with a path of
length &k from the start state to a resource granting state. Observe that a strong condition,
as for the case of two VMs and one resource, is not necessary here. For example, for five
VMs and three resources, two of the VMs can be freely assigned to two resources (one per
resource), while TDM-arbitrating the remaining three on the third resource. We conjecture
in this case that at least m —n + 1 VMs have to be TDM arbitrated.

Approved for Public Release; Distribution Unlimited.
82

7.5.5 Probabilistic Models of Resource Arbiters

Given that the only deterministic resource arbiters which achieve Conf Separation are inef-
ficient, we extend the model to allow for resource arbiters which take decisions probabilis-
tically and define a leakage notion associated with executing multiple VMs in this model.
This would allow one to trade off efficiency for leakage by comparing the added performance
of moving from TDM resource arbitration to probabilistic resource arbitration against the
leakage rate bounds guaranteed by the probabilistic model.

Definition 20 (Probabilistic Resource Arbiter) A probabilistic resource arbiter (PRA)
1 a randomized algorithm where in a given state the algorithm can probabilistically grant the
requests of a subset of VMs on a given input.

Note that the execution trace of a PRA is now a distribution, rather than a single output
trace.

Consider two VMs A and P and a probabilistic resource arbiter M. For a given sequence
length k, let Ip be the random variable denoting the input sequence from P. For a fized
individual input sequence 74 from A, the output of the resource arbiter projected to A’s
grants is a distribution fixed by the distribution of P’s requests and the random bits used
by M. We denote this distribution by O4(ia).

Definition 21 (Leakage Rate) The leakage rate from a VM P to a VM A in a probabilistic
resource arbiter M is the rate of difference in entropy between the a priori distribution of Ip
and the conditional entropy of Ip given O4(ia), mazimized over all possible i’s.

If Sk(A) is the set of all A’s input sequences of length k, the leakage rate from P to A is:

H(Ip) H(pr | OA(iA)))] .

Leakage Rate = lim [max (
k—oo |igeSK(A)

Our definition assumes that A is non-adaptive in the sense that its request sequence is fixed
regardless of the grants it observes from the resource arbiter.

7.5.5.1 Example of leakage-rate computation We give an example of a probabilistic
resource arbiter, for which we compute the leakage rate. Our example is a stateless resource
arbiter with two VMs {Py4, Pz} that makes a probabilistic decision at each step. It does
not queue requests and hence does not grant to processes which do not make requests at
the current time. If only P, makes a request the resource arbiter grants with probability
p, if only Pp requests it grants with probability ¢q. If both request then P, is granted with
probability r, Pg with probability s and neither with probability 1 — (r + s). Since the
resource arbiter is stateless and we assume that the input trace is non-adaptive, the leakage
rate is equal to the leakage of a single step. Assume that the a priori distribution of requests
from Pp is uniform. Observe that, if there is no request by Pa, H(Ip,|Op,) still remains
equal to H(Ip,) = 1, since there is no grant to Pj.

Approved for Public Release; Distribution Unlimited.
83

When P, makes a request, based on whether it was granted, P4 can infer information
about the distribution of Pg’s request. Let Iz =0 (I = 1) be the events that Pg does not
request (requests) and O4 = 0 (O4 = 1) be the events that P4 does not get (gets) a grant.
It is straightforward to show that Pr[O4 = 0] = (2 — p — r)/2 when P4 makes a request.
Using this we can derive

P’/’[OA:O‘]B:O] PT[IBIO]

Pr(Iz =004 = 0] = PO =0

__1-p

S 2—p—7
Similarly, one can compute Pr[lg = 1|O4 = 0] to be (1 —r)/(2 — p — r) using which we
can precisely compute H(Ip|O4 = 0). We can similarly compute H (/5|04 = 1). Finally we
have

H(I5|04)
= Pr[O4 = 0]H (5|04 = 0) + Pr[O4 = 1]H(I5|04 = 1)

- (1_p42r7“) H(I50,4 = 0) + 22

H(Ig|Oa=1),
and thus the leakage rate is 1 — H(I5|O4).

7.6 Formal Model of Loc Separation

Loc Separation deals with reads and writes of memory locations by VMs. In this section, we
derive lower-level requirements for Loc Separation as requirements for the memory access
control mechanisms employed by a platform consisting of hardware and a type I or type
IT hypervisor as well as requirements for the context switch mechanism employed by the
hypervisor. We derive these requirements in two steps. First, we derive the requirements for
access control assuming a static partitioning of the platform memory locations among VMs.
Second, we derive the requirements for the context switch mechanism when the partitions
are dynamically modified by the hypervisor.

7.6.1 Static Partitions

The memory locations used by VMs are mapped to physical memory locations on the plat-
form. This mapping takes the form of a translation map, which is an identity mapping for
certain physical memory locations. A hypervisor partitions the physical memory locations
of the platform among VM. Processing elements then perform reads and writes of physical
memory locations when requested by VMs via ReadLoc and WriteLoc interface calls. The
processing elements of the platform can be partitioned into two sets. Borrowing terminology
from computer systems, we call these partitions CPU and peripheral devices. In the CPU
partition we include hardware CPU as well as software-defined PE such as virtual devices,

Approved for Public Release; Distribution Unlimited.
84

hypercalls, and system calls. The peripheral devices partition includes all hardware devices
but the CPU. We begin with some definitions.

Definition 22 (Memory Elements) There are four types of memory elements in the plat-
form: (1) registers of all CPUs C, (2) main memory words M, (3) registers of all peripheral
devices P, and (4) persistent storage locations S, such as hard drive disk sectors. Elements
in the set P are of two types: memory-mapped elements and 10 ports. Each memory element
has a unique label called physical address. Processing elements read and write memory ele-
ments using interface calls Read M E(physicaladdress) and Write M E(physicaladdress, val)
respectively.

We state the following axiom on the operational model of memory elements.

Axiom 1 (Persistence of memory elements) For all physical addresses addr, the value
returned by ReadM E(addr) is val, if the immediately last write to the same address addr
was val, that is the immediately last write interface call to addr was WriteM E(addr, val).
If there was no previous write to addr, then ReadM E(addr) returns the constant bit string
1.

Definition 23 (Namespace) Namespace is a set of identifiers used by VMs to access mem-
ory locations. It is the set of tuples (V M, location).

Definition 24 (Translation Map) A Translation Map is a function mapping from a names-
pace element to a physical address. In actual systems, only memory elements in M and
memory-mapped memory elements in P have non-identity translation maps.

7.6.1.1 Operational Model of Processing Elements We now present an operational
model of processing elements that describes the interfaces via which they access memory
elements.

Operational Model of CPU A CPU can read and write any memory element in the sets
M, P, and all of its registers. A CPU cannot read or write the registers of other CPUs.

On getting an interface call ReadLoc(V M;, loc), where the namespace element (V M;, loc)
is mapped to a memory element of the set M or to a memory-mapped element of the set
P, the CPU returns the value returned by ReadM E(TranslationMap(V M;,loc)). The
translation map is set up by the hypervisor and the function is computed by a hard-
ware device such as the memory management unit (MMU). Similarly for writes, we have
WriteM E(TranslationMap(V M;, loc),val). If no translation exists for a namespace ele-
ment, the MMU notifies the condition by raising an interrupt. The interrupt is handled by
the hypervisor, which could add memory elements to resource partition of V' M; and update
the translation table to map (V' M;,loc) to the newly allocated resource, or it could signal
an error to V M;.

Approved for Public Release; Distribution Unlimited.
85

Access from CPU to elements in P which are IO ports and elements in S is governed by a
suitable access control policy; examples of mechanisms used to implement such access control
policies include the IO Permission Bitmap of x86 CPU and file system access control. On get-
ting an interface call ReadLoc(V M;, loc), where the namespace element (V' M;, loc) is mapped
to read a memory element of the set P that is an IO port, or to a memory element in the
set S, the CPU returns the value returned by ReadM E(AccessControl Policy(V M;,loc)).
Similarly we have Write M E(AccessControl Policy(V M;, loc),val), for writes to 10 ports
and memory elements in the set S. If V M; cannot read or write to port or storage location
at (V M;,loc) due to the access control policy, the CPU notifies of the condition by raising
an interrupt. The interrupt is handled by the hypervisor, which could update the access
permissions to allow V' M; to access loc, or it could signal an error to V M.

Operational Model of Peripheral Devices A peripheral device can read and write any
memory element in the set M via hardware mechanisms such as direct memory access (DMA)
and memory elements in the set P. A peripheral device cannot read any memory elements
in the set C' or S. However, it can read and write the memory elements in S indirectly via
reads and writes of memory elements in the set P belonging to the disk controller.

On receiving an interface call ReadLoc(V M;, loc) where (V' M;, loc) is mapped to a mem-
ory element of the set M, a peripheral device returns Read M E(TranslationMap(V M;, loc)).
The translation map is set up by the hypervisor and the function is computed by a hard-
ware device such as the IO memory management unit (IOMMU). Similarly, for writes we
have WriteM E(TranslationMap(V M;, loc),val). If no translation exists for a namespace
element, the IOMMU notifies the condition by raising an interrupt. The interrupt is han-
dled by the hypervisor, which could add memory elements to resource partition of V' M, and
update the translation table to map (V' M;, loc) to the newly allocated resource, or it could
signal an error to the peripheral device.

Access from a peripheral device to all elements in P is governed by a suitable access
control policy. Such access control policies can be implemented using hardware mecha-
nisms such as PCI Express Access Control Services [PCI06]. On getting an interface call
ReadLoc(V M;, loc) to read a memory element of the set P, the peripheral device returns the
value returned by ReadM E(AccessControl Policy(V M;,loc)). Similarly for write we have
Write M E(AccessControl Policy(V M;, loc),val). If V M, cannot read or write the memory
element of the set P at loc, the peripheral device notifies the condition by raising an inter-
rupt. The interrupt is handled by the hypervisor, which could update the access permissions
to allow V' M; to access loc, or it could signal an error to the peripheral device.

7.6.1.2 Requirements for Static Partitions The requirement can be stated as fol-
lows:

Requirement 17 (i) The translation map is an injective function, possibly partial, and (ii)
the access control policy must only permit a VM to read and write memory elements to which
it has exclusive access.

Approved for Public Release; Distribution Unlimited.
86

The basic soundness proof idea is to bootstrap from the axiom about the persistence
of MEs and use injectivity of the translation map function to prove the existence of Loc
Separation. The translation map can be partial to account for the fact that all namespace
elements may not have a translation. For memory elements that have an identity translation
map, the access control policy must ensure that any VM having access to these memory
elements has an exclusive access. This ensures that there is no explicit flow of information
through shared memory.

7.6.2 Modification of Partitions

A hypervisor modifies the partitions of the memory elements either as a result of an interrupt
from a CPU or peripheral device indicating that a namespace element has no translation,
or as a result of an explicit allocation request from a VM. Therefore, the partitions change
over time. The following requirement must be asserted at the completion of each such
modification of partitions.

Requirement 18 (Value Invariance) Suppose that the partition for VM changes from
P, to P,. Then, its translation map changes from Ty to Ty. Consider each namespace
element (V M, loc), such that (V M, loc) maps to different physical addresses under mappings
Ty and Ty. That is T1(V M, loc) is a different physical address than To(V M, loc). Then it is
required that any subsequent read call Read M E(Ty(V M, loc)) returns val, where val was the
immediately last value written to T\ (V M, loc) using Write M E(T,(V M, loc),val), before the
partition was modified.

7.7 Discussion

With this work we have taken a different approach towards system development. In the
conventional approach, one develops a high-level specification that defends against known
attacks, and formally proves that its low-level implementation satisfies the specification. We
contrast this with our approach in the UC framework (Section 7.4), where an ideal-world
model captures the security properties that we want to achieve, and the interfaces that are
exposed to attack (the security assumptions). We then prove that these security properties
hold for all possible attacks on those interfaces in our real-world model.

Our UC-based approach differs in the granularity of attacks addressed. While the conven-
tional approach focuses on specific symptoms (the attacks), our work focuses on underlying
causes (the mechanisms that make such attacks possible). Our Conf Separation condition
(Section 7.5) addresses the root cause of timing side channels: competition for shared re-
sources whether these are CPU cycles, cache lines, or access to a disk drive. We prove
that timing side channels due to resource arbitration latencies can be eliminated with static
time partitioning. Our Loc Separation condition (Section 7.6) addresses the root cause of
explicit information flows. We demonstrate that access control (via address translation or
access matrix mechanisms) and correct execution of context switch operations are sufficient
to prevent explicit information flows.

Approved for Public Release; Distribution Unlimited.
87

Our isolation conditions are at least in part realizable in hardware, as demonstrated by
two secure processor implementations that eliminate implicit information flows. The first,
GLIFT [TWM™09], uses dynamic information flow tracking with shadow circuitry to make
all information flows explicit. The second, Caisson [LTO™11], provides provable information
flow security of micro-architectural processor features, using a statically-verifiable hardware
design language.

Besides addressing attacks at higher levels of granularity, the UC framework encourages
modular design. In particular, UC guarantees that security properties of one system will
hold even when that system is composed with other systems, without introducing security
vulnerabilities due to composition. Just like modular design of systems leads to economies of
scale with pre-designed components, we believe that the UC framework can lead to economies
of scale with modular proofs constructed by composition.

7.8 Summary

Virtualization platforms are built around the concept of transparent sharing of hardware
resources and have increasingly been used to provide isolation between the virtual machines
of different users or at different security levels. Unfortunately, such isolation is incomplete
as many attacks have demonstrated.

We presented a formal model for isolation that covers both explicit information flows
and timing-based and storage-based implicit information flows. To make this formal model
practically applicable, we presented five requirements for isolation, each one addressed to a
different component of a hypervisor and hardware platform (access control, error reporting,
implicit state, arbitration policies, and execution control). We proved in the Universal Com-
posability framework that for isolation to be realized in a practical virtualization platform
it is sufficient that the five requirements are satisfied.

In our formal treatment of timing side channels we provided an isolation proof for deter-
ministic resource arbiters and showed that only time-division multiplexing (TDM) scheduling
policies can achieve isolation. Since TDM schedulers are not favored due to their inefficiency;,
we considered a weaker definition of isolation that allows a bounded amount of leakage and
quantified leakage rates for a subclass of probabilistic stateless schedulers.

In our formal treatment of explicit information flows we demonstrated that access control
(via address translation or access matrix mechanisms) and context switching are sufficient
to prevent such flows. Our results cover a wide spectrum of virtualization platforms, from
paravirtualization to dynamic binary translation to self-virtualizing hardware.

We believe that our formal discussion of isolation will guide software implementors to take
advantage of features that enable sharing without explicit or implicit information flows, and
that it will guide hardware implementors to provide features that support efficient resource
sharing without information leakage.

This application of the UC Framework to model a complex systems concept such as
strong isolation is evidence of the general suitability of the framework to other applications.

Approved for Public Release; Distribution Unlimited.
88

8 Composition Failures in Protocols

The Universal Composability framework was originally developed for and has been exten-
sively used to model cryptographic protocols (see [Can, Can06]). Its formal mechanisms are
well suited to the message passing paradigm where the interfaces can be essentially which
messages the parties actually respond to. In the Montage project, we have tried to apply
UC to protocols outside the realm of cryptography in order to capture protocols which have
elements of system implementations. Further as we discuss in Section 10 they provide nice
examples for our effort to automate the equivalence proofs. In the course of our investigation
of the right protocols to model, we discovered a very general protocol composition failure
in a number of practical systems and daemons. This is a perfect example of the kinds of
problems which can be avoided by modeling with a framework which is composable.

8.1 Plaintext injection in multiple legacy protocol implementa-
tions

This segment details the software flaw that was initially discovered by Wietse Venema, one
of the Montage team members, while maintaining the Postfix open source mail server [Ven]
implementation of SMTP (Simple Mail Transfer Protocol) [Kle08] over TLS (Transport Layer
Security) [DA99).

Subsequent investigation revealed that this flaw was widespread. It affected not only
multiple implementations of SMTP over TLS, but it also affected multiple implementations
of other Internet protocols over TLS. An overview of known to be affected products and
services is shown in Table 1. We present an overview of the problem and its impact, and
draw lessons about where one can expect to find similar problems.

8.1.1 Problem overview and impact

The TLS protocol [DA99] encrypts communication and protects it against modification in
transit across the network. This protection exists only if a) software is free of flaws, and
b) clients verify the server’s TLS certificate, so that there can be no “man in the middle”
(servers usually don’t verify client certificates).

The problem discussed here is caused by a software flaw that affected the TLS support for
multiple legacy Internet protocols including SMTP [Kl1e08], IMAP (Internet Message Access
Protocol) [Cri03], POP (Post Office Protocol) [MR96], FTP (File Transfer Protocol) [PR85]
and NNTP (Network News Transfer Protocol) [Fea06].

In the case of SMTP, the flaw would allow an attacker to inject client commands into an
SMTP session during the unprotected plaintext SMTP protocol phase (described in more
detail later), such that the server would execute those commands during the SMTP-over-
TLS protocol phase (when all communication is supposed to be protected). The injected
commands could, for example, be used to steal the victim’s email or SASL (Simple Authen-
tication and Security Layer) [SM07] username and password.

Approved for Public Release; Distribution Unlimited.
89

Table 1: Summary of known to be affected products and services, with vulnerability iden-
tifiers if available. The proprietary applications used in-house for the Gmail and Postini
services were fixed without a public announcement.

Vulnerability 1D

Affected Product or Service

CVE-2011-0411

Postfix mail server [Venl1]

CVE-2011-0411

Oracle Communications Messaging Server [Oralla]

CVE-2011-1430

Ipswitch IMail [Imall]

CVE-2011-1431

gmail-tls [qmall] (third-party patch for qmail [net] mail server)

CVE-2011-1432

SCO SCOoffice Server

CVE-2011-1506

Kerio Mailserver [kerl1]

CVE-2011-1575

Pure-FTPd [Denl1]

CVE-2011-1926

Cyrus IMAP [cyrll] (IMAP, LMTP, POP3, NNTP server)

CVE-2011-2165

WatchGuard XCS [wat11]

CVE-2012-0070

spamdyke [spal2]| (third-party front-end for qmail [net] mail server)

N/A gpsmtpd [qpsll] (third-party front-end for qmail [net] mail server)
N/A Gmail mail submission service
N/A Postini mail filtering service

Client Server Client Server
Application Application Application Application
}
\
Network Network TLS TLS

Stack Stack Engine Engine
w

Network Network

Stack Stack

Figure 10: Logical view of client-server application before (left) and after (right) the START-
TLS client request.

Approved for Public Release; Distribution Unlimited.
90

8.1.2 The STARTTLS feature

STARTTLS is the generic name for a feature of many legacy Internet protocols. Its purpose
is to “upgrade” a session from plaintext to TLS.Although web servers use different TCP
ports for plaintext (http on port 80) and encrypted (https on port 443) communication,
the use of separate ports for TLS and non-TLS communication has been deprecated for other
protocols. Some arguments for depreciation can be found in Section 7 of [New99]. START-
TLS implementations exist among others for SMTP [Hof02], IMAP [New99], POP [New99],
FTP [FHO5] and NNTP [MVNO6].

The basic idea of STARTTLS is that a client connects to the standard network port for
the legacy service (for example TCP port 25 for SMTP or 143 for IMAP), and then performs
the traditional plaintext handshake for that protocol. The plaintext handshake is needed
because that is how the protocol is defined; simply skipping the plaintext phase would break
interoperability.

During the plaintext handshake a server may announce that it supports TLS. If both
client and server support TLS, the client may send a STARTTLS request to turn on TLS
(in some protocols the command is abbreviated to STLS). Logically, this request results in
the insertion of a TLS engine between the application and the network stack as illustrated
in Figure 10.

After the client- and server-side TLS engines negotiate a TLS cipher and session key, all
further traffic between the client and server application is encrypted and protected against
modification in transit across the network. The client and server application discard all
information that they exchanged during the plaintext handshake, and restart their conver-
sation using the same application protocol command set as they used in the absence of TLS
encryption.

8.1.3 Demonstration of the problem for SMTP

The problem is easy to demonstrate with a one-line change to the OpenSSL s_client com-
mand source code. This program makes a connection to servers that support straight TLS,
SMTP over TLS, or a handful other protocols over TLS. The demonstration here focuses on
SMTP over TLS only.

The demonstration with SMTP over TLS involves a one-line change in the OpenSSL
s_client source code, available from openssl.org. With OpenSSL 1.0.0, the change is made
at line 1129 of file apps/s_client.c. To build the s_client command, execute the com-
mands ./config; make.

e Old code: BIO printf (sbio,"STARTTLS\r\n");
e New code: BIO printf (sbio,"STARTTLS\r\nRSET\r\n");

The modified s_client command sends the plaintext STARTTLS command immediately
followed by an RSET command (a relatively harmless SMTP protocol “reset)”. Both com-
mands are sent as plaintext in the same TCP/IP packet, and arrive together at the server.

Approved for Public Release; Distribution Unlimited.
91

The \r\n are the carriage-return and newline characters; these are necessary to terminate
an SMTP command.

When an SMTP server has the plaintext injection flaw, it reads the STARTTLS command
first, switches to SMTP-over-TLS mode, and only then the server reads the RSET command.
Note, the RSET command was transmitted during the plaintext SMTP phase when there was
no protection, but the server reads the command as if it was received over the TLS-protected
channel.

Thus, when the SMTP server has the flaw, the s_client command output will show two
250 SMTP server responses instead of one. The first 250 response is normal, and is present
even when the server is not flawed. The second 250 response is for the RSET command, and
indicates that the SMTP server has the plaintext injection flaw.

$ apps/openssl s_client -quiet -starttls smtp -connect server:port
[some server TLS certificate details omitted]

250 some text here [Normal response, also with "good" server]

250 more text here [RSET response, only with flawed server]

An attacker would exploit this by playing man-in-the-middle on the connection between
SMTP client and server, perhaps using one of many available tools for ARP [Plu82] spoofing
at a public WIFT access point. Instead of adding a harmless RSET command, the attacker
could inject commands into a victim’s session to open a mail transaction, and steal the
victim’s SASL authentication credentials and email.

8.1.4 Switching world views

When the switch from plaintext to TLS mode is made, all layers above the TLS engine (see
Figure 10) need to purge all information that they received through the plaintext handshake.
This world view switch needs to be implemented consistently. Otherwise, “extra” information
that was sent as unprotected plaintext may slip through the cracks.

In the case of Postfix and other affected implementations, this world view switch was
incomplete. These implementations did not account for information that lingered in stream
buffers at the boundary between software layers. This allowed an attacker to append “extra”
commands to the plaintext STARTTLS request, such that those commands would be read
after the switch to TLS was completed, as if the commands had arrived through the TLS-
encrypted session.

8.2 Remediation

There are two types of remedies to address the flaw: those that focus on the buffering prob-
lem, and those that focus on unexpected command or response pipelining. Both remedies
can be used together.

Approved for Public Release; Distribution Unlimited.
92

e (Clear buffers: After switching from plaintext to TLS, client and server applications
must discard all contents of their network input buffers, just like they must discard all
SMTP protocol information received during the plaintext handshake.

e Server-side pipelining check: Report an error when a server receives unexpected input
appended to a STARTTLS command. For example, RFC 3207 [Hof02] states that
STARTTLS must be the last SMTP command in a pipelined group. Similar constraints
are specified for other protocol-over-TLS implementations. If a plaintext command is
appended to STARTTLS, then that is a protocol violation.

This remedy can also be implemented outside the mail server, for example in a protocol-
aware firewall or other network-level tool.

e Client-side pipelining check: Report an error when the client receives server responses
after TLS is turned on, for commands that the client did not yet send.

This measure is complementary to the server-side pipelining check. Since the unex-
pected server replies are sent through the TLS-protected session, this remedy cannot
be implemented in network-level tools.

8.3 Comparison with other vulnerabilities

In 2009, two independent groups jointly announced a new vulnerability in x86 proces-
sors [Duf09, WR09]. This vulnerability involved SMM RAM, a region of main memory
in x86 CPUs that is accessible only when the CPU executes an SMM (System Management
Mode) interrupt. In SMM mode, the CPU runs at a privilege level that is higher than root
(supervisor) or hypervisor. If an attacker could compromise SMM RAM, they would be
undetectable by software running with less-than-SMM privileges.

In the attack, a program with root or hypervisor privilege configures a memory controller
such that the SMM RAM address range was changed from non-cacheable into “cacheable
with write-back”, then writes machine instructions to SMM RAM memory. The CPU writes
the instructions to the CPU cache; this is possible because the CPU cache doesn’t know
whether the CPU can write to SMM RAM. Once the CPU is triggered to switch into the
privileged SMM mode, it executes the attacker’s SMM RAM instructions from the cache.

This CPU cache poisoning vulnerability is similar to STARTTLS plaintext injection. In
both cases, there are a lower- and higher-security context; instructions are stored in a lower-
security context, and are executed after switching to a higher-security context. Both cases,
the solution is to discard such stored instructions when switching to the higher-security
context.

The STARTTLS plaintext injection problem differs from cache poisoning attacks that
are possible with unauthenticated implementations of DNS (domain name system) [Moc87],
ARP (address resolution protocol) [Plu82] or DHCP (dynamic host configuration proto-
col) [Dro97], where an attacker attempts to send forged answers before the real reply arrives.

Approved for Public Release; Distribution Unlimited.
93

With these attacks, the problem is that the victim cannot reliably distinguish between an
authentic response and a forgery; all the attacker needs to do is win a race.

8.4 Summary

The plaintext injection problem described in this segment happens when two conditions are
met:

e A protocol has a STARTTLS-equivalent feature that allows two communicating appli-
cations to switch from plaintext to encrypted communication, by inserting a crypto-
graphic protocol underneath the plaintext application protocol (see Figure 10).

This is a popular approach to “upgrade” legacy Internet protocols with the security
benefits from TLS, without requiring any changes to the legacy protocols.

e A server implementation supports command pipelining, such that plaintext commands,
appended to the STARTTLS-equivalent command, will be executed after the plaintext-
to-ciphertext switch is completed.

As many legacy Internet protocol implementations use some form of 1/O buffering
internally, they will unwittingly support command pipelining even when this is not a
documented protocol option.

In conclusion, plaintext injection will be a recurring problem for as long as applications
have a STARTTLS-equivalent feature.

Approved for Public Release; Distribution Unlimited.
94

9 Modeling of OAuth 2.0 Web Security Protocol

Web security protocols are very natural candidates for analysis with the UC framework.
Typically, they are primarily cryptographic protocols with a bit of infrastructure elements
like DNS and systems such as browser implementations and conventions. Besides analyzing
important real-world web security protocols thereby ensuring that they have been formally
vetted, our aim was also to produce enough non-trivial examples for the automation described
in Section 10.

We analyze the Web delegation protocol OAuth Version 2.0 in the Universal Composabil-
ity (UC) Security framework. We have chosen to only Authorization Code mode of OAuth
2.0. Analysis of the Implicit Grant mode will be covered in an extension.

9.1 Outline

The following is an outline of this section:

Section 9.3 gives a formal definition of the Secure Channel Ideal functionalities and ab-
straction for SSL based secure channels, which will be used extensively in this section,
as well as describe conventions that will be used in defining ideal functionalities.

Section 9.4 defines the OAuth 2.0 Authorization Code Ideal Functionality Foaypg+- It
assumes that the Client (also called Consumer) and Service Provider have globally
known names, whereas the User (or user agent) only has local identity based on a
userid, password account with these global entities.

Section 9.5 and Fig 14 give a real-world realization of the Ideal Functionality Fqypp*
using SSL. This implementation is general purpose and does not restrict the User code
to be a user agent (i.e. an http browser). This section rigorously proves that this
is a universally composable (UC) secure implementation. Later, in Fig 15 we give a
refinement of this implementation where the User code is restricted to being a User
Agent capable of handling https redirections. Further still, in Figs 16 and 17 we give
refinements where some of the initial flows are based on hyper-links being sent by
authenticated or unauthenticated emails respectively by the Client (Consumer) to the
User.

9.2 Security Analysis Synopsis

Salient findings related to security of OAuth 2.0 Authorization Code mode include:

1. The protocol in Fig 15, which we prove to be a secure realization of our Ideal Function-
ality for OAuth, is more or less the same as defined in the IETF internet draft OAuth
Version 2.0 Authorization Code mode [HL10], except for a few fine points noted below.

Approved for Public Release; Distribution Unlimited.
95

2. Web-Servers which serve arbitrary Users on the Internet must have public keys for
authenticating themselves. Thus, both the Service Provider and the Consumer (Client)
must have public keys. Further, for simplicity, assuming that the public key of the
Service Provider is attested by a global Certificate Authority (CA), the Public Key of
the Client should at least be pre-registered with this globally certified Service Provider
(if Client itself does not already have a globally certified public key). If the Client’s
public key is not globally certified, then its public key must be distributed securely to
applications running on User’s machine and capable of verifying signatures issued with
this public key (in essence, implementing SSL).

3. Given that the Service Provider is required to have a globally certified public key, one
can assume that it can handle SSL requests, in particular https requests. Since the
Client also has a public key with the public key securely delivered to the User, the User
Machine’s application must be able to run a protocol with this Client which essentially
implements SSL.

4. Tt is advisable that the login form presented by the Service Provider to the User contain
both the Globally certified name of the Service Provider (e.g. Charles Schwab) and
the Globally known name of the Client (e.g. turboTax) as to whom temporary access
is being granted. While this is not that important in cases where the hyper-link to
the Service Provider’s login page comes from the Client via an SSL connection, but it
can be important where the hyper-link to the Service Provider’s login page comes via
un-authenticated email (see fig 17).

5. In the flow where the Client (Consumer) presents the Authorization Code to the Server
to get back an Access Token, the Service Provider should establish that this Client is
the same as the one to whose redirect URI the Authorization Code was sent. The
correct flows are as follows (or any equivalent flows). During Authorization Grant,
when the Server is presented with a Client’s redirect URI, a public key of the Client,
and a certificate on this public key, the Server must check that this redirect URI
belongs to the same entity, by either checking for this information in the certificate or
by checking that this fact has been pre-registered. The session id for this session is
saved by the Server along with this public key of the Client. Later, when the Client
comes back to present the Authorization Code to get the AccessToken, the Server must
check that this request is coming from a Client with the same public key. This can be
done e.g. by using SSL/TLS two-side certificate checking. This essentially implements
the Secure Channel Ideal Functionality (Fig 11).

We point out that this check is only required if the Client and User have an authenti-
cation mechanism (e.g. a userid, password) of their own, which is most likely the case.
If the Client never authenticates the User, then because of other security issues, the
fine points of the previous paragraph are moot.

6. If the Client authenticates the User, say by a userid, password account (which could be
same or different from the account the User has with the Provider), then every fresh

Approved for Public Release; Distribution Unlimited.
96

SSL session between the User and the Client must re-do this authentication. Thus, in
the protocol we give (Figs 14 and 15), there are two SSL sessions between the User
and the Client, and the second can be replaced by just using the first if the first is still
active. If however, the first session has expired (and cannot even be refreshed) and a
new SSL session must be established, then the authentication of the User by the Client
must be re-done in this new SSL session.

9.3 The Secure Channel Ideal Functionality

Cryptographic protocols are inherently multi-party protocols where the parties jointly com-
pute some function. While the issue of liveness of protocols falls in the realm of distributed
computing, we are interested here in issues related to privacy (secrecy) of the parties, as well
as the related issue of authentication.

These multi-party privacy constraints of a protocol are best defined by hypothetically
employing an ideal trusted third party. In the simplest form of this definitional paradigm, all
parties hand their respective inputs to the ideal trusted third party, which then computes the
function on these inputs as desired by the protocol being defined, and then hands portions
of the output to the individual parties, the portions restricted to what is desired by the
protocol.

Note that in the above we assumed that the parties have a secure and persistent tunnel
to the ideal third party, but this being just a definition this assumption is not a concern.
In addition, if the protocol requires that a party in this multi-party protocol be a particular
globally known entity, then we further assume that one of these secure tunnels is known to
the ideal third party to be connected to that globally known entity. In the real world this
can for example be implemented using a public key infrastructure (PKI). For parties that
are not globally known, the ideal third party just assumes a persistent connection to some
party (e.g. this will guarantee that it gives output to the same party that supplied some
input using that tunnel). These issues will be brought up again in the examples below.

In a more general setting, this definitional paradigm also allows the ideal third party to
leak certain information to an Adversary (without loss of generality, we always assume that
there is only one monolithic adversary). This maybe a necessary part of the definition as
otherwise there may not be any implementation possible in the real world (i.e. a distributed
implementation without the ideal third party). In a further generalization, the ideal third
party may also take directives and/or inputs from the Adversary.

Finally, to allow a compositional definition, we assume that all parties (except the ideal
third party, but including the Adversary) are driven by an all encompassing entity called
the Environment. In other words, the inputs of the parties (possibly related) are actually
provided by the Environment so as to cover all possible scenarios. This notion of Environment
is not necessary to understand ideal functionalities, but it will become important when we
discuss compositional security.

Coming to our first example, we discuss the ideal functionality “Secure Channel” de-
scribed in Fig 11. It is the ideal functionality representing authenticated and encrypted

Approved for Public Release; Distribution Unlimited.
97

Ideal Functionality Fgc
Fsc proceeds as follows, running with parties P, ..., P, and an adversary S.

1. Upon receiving a value (Establish-session, sid, P;,initiator) from some party, P;
send (sid,Establish-Session, P, P;) to the adversary, and wait to receive a value
(Establish-session, sid, P;,responder) from P;. Once this value is received, set a
boolean variable active. Say that P; and P; are the partners of this session.

2. Upon receiving a value (Send, sid, m) from a partner P,, e € {i,j}, and if active is
set, send (Received, sid, m) to the other partner and (sid, P;,|m|) to the adversary.

3. Upon receiving a value (Expire-session, sid) from either partner, un-set the vari-
able active.

Figure 11: The Secure Channels functionality, Fsc

Ideal Functionality Fgssr,

The functionality Fggy, is between a party P; (the Server) and an unnamed party designated
as the client. This models the asymmetric situation when the server has a public idenity
but a client who connects to it has no global identity.

1. Upon receiving a value (Establish-session, sid, P’;,initiator)
from some party, say F;, the functionality first sends the message
(sid,Establish-Session, initiator, P, P;) to the adversary. If the adver-
sary responds positively the functionality records P, as the client in this session
and sends the message (sid,Establish—request) to P;. When it receives the
value (Establish-session, sid, responder) from FP; in response it sends
(sid,Establish-Session, respondor, P;) to the adversary, and it sets the session
as active between client P; and server P;.

2. Upon receiving a value (Send, std, m) from a party P., it checks to see if the session
sid is active and that P, is either P; or P;. It then sends (sid, P, |m|) to the
adversary and when it receives a positive response it sends (Received, sid, m) to the
other partner in the session.

3. Upon receiving a value (Expire-session, sid) from either the client or server in the
session it sets state to inactive and public delayed informs the other party.

Figure 12: The SSL functionality, Fgsr,

channels between two globally known parties, e.g. two parties with public keys in a PKI.
Since, the same two parties may be involved in multiple different secure channel sessions

Approved for Public Release; Distribution Unlimited.
98

(possibly concurrently), we assume that the two parties have decided on a session id (sid)
before hand; in fact this sid may be decided by the Environment as it drives all the parties
anyway. We emphasize that this definition of secure channel requires that the parties have
globally known names. For instance when party P; initiates a session with an Establish-
session input to the ideal functionality, it is naming a party P; with which it wants to have
the secure channel session. Similarly, the same named party FP; must respond with the
Establish-session input while naming P;. Once, both parties have supplied their Establish-
Session inputs, while naming the correct counter-parties, the ideal functionality sets its local
state to active. From then on, either party can send a message to the other party using the
ideal functionality, which only leaks the length of each message to the Adversary (it is possi-
ble to have an ideal functionality which does not even reveal the length of the message to the
adversary, but implementing such a functionality in the real world may be very inefficient).

Moving on to the next example, the SSL ideal functionality in Fig 12, one notices in
contrast to the secure-channel functionality above that only one of the peers is supposed to
have a globally known name, and the session can be initiated by any party P, and whose
name is never referred to in any messages (initialization or otherwise). The adversary is
leaked information about the name being used by this client (e.g. a temporary IP address),
which is unavoidable in any real-world implementation.

9.3.1 Conventions for Defining Ideal Functionalities

Delayed Messages When an ideal functionality outputs a value to a party, this delivery
of value can be either public delayed or private delayed. Essentially, since the
network in the real-world is assumed to be under adversarial control, one can only
guarantee delivery of messages in the real-world if the adversary complies. Thus, any
value to be delivered to a party is termed “delayed”, which is a short form saying
that the functionality requests the Adversary to deliver the value, and if the adversary
responds positively, then the value is actually delivered. When the functionality terms
the delivery public delayed, it means that the adversary gets to see the actual value,
whereas if it is termed private delayed, then the adversary only gets to see the length
of the message in bits.

Corruption Each ideal functionality has a function called Corrupt which the Adversary
can call to declare a globally known entity (i.e. one with a public key in PKI) corrupted.
The functionality then records in its local state that the party is corrupted. The
functionality may choose to have a different behavior based on whether certain parties
are declared corrupted. Normally, this would mean, for example, instantly revealing
some internal state of the ideal functionality to the Adversary, as that is what happens
in the real-world. Ideally speaking, one would like to have the case that even if some
parties in a protocol are corrupted, it does not affect the privacy of other parties, and
most ideal functionality would be defined in that fashion. However, one cannot exclude
some side effects from happening when some party in the protocol is corrupted.

As an interesting example related to OAuth, suppose that legitimate Clients (or Con-

Approved for Public Release; Distribution Unlimited.
99

sumers) are registered with the Service Provider. In fact, under PKI attestation of
the URIs of the Clients, the Service Provider just needs to know the global identity
of these Clients. If a User agent contacts (under SSL) a Service Provider with a URI
of a Client (attested under PKI to be associated with a globally known name P.),
and further if the User Agent manages to provide correct userid,, passwordy to the
Service Provider under the same SSL session, then the Provider can assuredly provide
the client P, information related to the account userid,. Now consider the situation
where the password, was easy to guess, and hence the User Agent was being driven by
an illegitimate user (Adversary). If the Client was not authenticating the User on its
own, then the Adversary would end up getting information related to userid4 (via the
Client). But, if the Client was also authenticating the User under possibly a different
useridg, passwordpg, and if this password was tough to guess for the Adversary, then
the Client will never open a session with this illegitimate user. However, a different
Client P! which is a pre-registered Client may be malicious and may join forces with the
Adversary. In this case, as soon as the illegitimate user presents userid 4, passwordy,
P! to the Service Provider, the information related to userid, is essentially given to
the Adversary by the Provider. The ideal functionality would do exactly that, but it
needs to be informed that P! has been corrupted (i.e. it has joined forces with the
Adversary).

Session Id The session identifier or sid is assumed to be unique (but non-secret) for each
instantiation of the real-world protocol or the ideal functionality. Usually, in the Uni-
versal composability paradigm [Can01], the sid is assumed to be determined by a
wrapper protocol (hence the Environment) between all legitimate parties, and this
pre-determined sid is passed along with other inputs by the Environment to all legiti-
mate parties of the protocol. However, this wrapper protocol could lead to an inefficient
complete protocol, as it may take additional flows. Thus, in our definition of OAuth’s
ideal functionality, we have minimized any such wrapper protocol for determination of
sid, so that the resulting implementation is in line with practical implementations of
OAuth. One implication of this is that the ideal functionality has many more flows
than one would expect. For example, the Service Provider is not pre-determined by
the sid, and is actually passed as an input by the Client. Similarly, the Client is not
pre-determined by the sid, and the Client’s global identity is passed to the Provider
(with possible Adversarial manipulation of this identity) in the ideal functionality.

9.4 The OAuth Ideal Functionality

Before we embark on giving a definition of the OAuth Ideal Functionality, we paraphrase
the following abstract from the OAuth V2 Internet draft ([HL10]):

“The OAuth 2.0 authorization protocol enables a third-party application to obtain limited
access to an HT'TP service, either on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HT'TP service, or by allowing the third-party
application to obtain access on its own behalf.”

Approved for Public Release; Distribution Unlimited.
100

We will focus mainly on the first kind of delegation which requires an approval interaction.
In the ideal functionality definition, we will refer to the three parties named above as User
(resource owner), Provider (HTTP Service), and Consumer (third-party). Moreover in
this section, we will assume that the Provider and the Consumer have globally known names,
e.g. public keys with certified domain names in PKI. Only the User will not be assumed to
have a global name. The case where the Consumer has a public key which is not certified
by a global CA is dealt with in a later section.

In particular, the most interesting and wide-spread case arises where the User has a
(userid, password) account with a Provider, which needs to be delegated to the Consumer.
The basic idea of the definition can be summarized as follows: A User starts of using a
software provided by a Consumer P,, say as a web site with PKI certified public key. To model
this, the User calls the ideal functionality with an input message (sid, initiate, P,, P.). Here
sid is a non-secret but unique session identifier which is chosen by the User or Environment
(wrapping the User). Note that P, may just be a temporary identifier, e.g. a temporary
IP address. The Consumer, at some point decides that it needs access to data of the User
held at a Provider P;, again P, being a web site with a PKI certified public key (see Fig 13
for a formal description and Fig 18 for a pictorial depiction). The ideal functionality
then forwards the name P, to the User, who in response provides a userid and password
to the ideal functionality (corresponding to its account at Ps). The ideal functionality then
provides the userid and the name P, to P,. At this point, P, may abort, if for example it does
not wish to provide data to P., or if it deems userid to be invalid. Otherwise, it responds to
the ideal functionality with the pre-registered pw’ corresponding to the userid provided Note
that, all parties are really being driven by wrapper software around these parties, which we
treat as a single monolithic Environment. The main reason for treating the Environment as
monolithic is that one cannot assume that the individual wrapper software are not talking
to each other via some other protocols and in the process leaking information. Thus, the
universal composability (UC) paradigm lets one analyze the security of the protocol even if
the wrapper software are buggy, or downright maliciously collusive.

The ideal functionality next checks the two passwords for equality (the one supplied by
the User and the one returned by the Provider). If they are not equal, the session is aborted,
and the Adversary is also leaked this information (as it is highly inefficient to not leak this
information in the real-world). If they are equal then the functionality sets a local status
variable, say authentication status to valid, and this status is also revealed to the Adversary.

Next, the ideal Functionality issues a randomly generated AccessToken to the Provider
P, and Consumer P,., but only at the Adversary’s directive, i.e. the Adversary can cause
denial of service. This common and secret AccessToken may be used by the two parties to
communicate any information related to the account corresponding to userid. Note again
that the wrapper software of the Provider is given the userid and the AccessToken, and if
the wrapper software is buggy, there are no security guarantees. The ideal functionality only
guarantees that a userid has been provided to the Provider, and further that the password
the Provider gave for this userid is same as the password provided by some arbitrary party
P,, and that the Provider shares the AccessToken with a globally known entity P,., the

Approved for Public Release; Distribution Unlimited.
101

Ideal Functionality .7-"0 AUTH*

Participants: An arbitrary User P,, Service Provider Ps, Consumer P, and Adversary S interact with functionality
Foaury* (or F).

Status Variables: Deflection Status (default: normal), Usurpation Status (default: normal), Authentication Status
(default: empty).

Initiate: On receiving an input message (sid,initiate, Py, Pe) from P,, output (public delayed) the message
(sid, params—req) to P.. On receiving a reply (sid, params, Ps) from P., output (public delayed) the
message (sid, params, Ps) to P,.

On receiving a response (sid, credentials,userid,pw) from P,, output (sid, initiate—req, userid, P.)
to adversary S. On receiving a response (sid, initiate—req,userid’, P!) from adversary S, output
(sid, initiate—req, userid’, P!) to Ps. Further, if userid’ is not the same as userid or P/ is not the
same as P, set the deflection status as deflected.

Next, on receiving a response (sid, password, pw’) from Ps, record pw’ locally. If the deflection status is
not set as deflected, then check if pw = pw’, and if the two passwords are not the same then set
the authentication status as aborted and output (sid, abort—oauth) to the Adversary. Otherwise (if
the passwords are same), set authentication status as valid and output (sid, initiate—oauth) to the
Adversary. If the deflection status is set as deflected, skip the above steps and wait for a TestPwd
call from S.

Instead of responding with a pw’, Ps may instead respond with (sid, bad—params), in which case the func-
tionality sets the authentication status as aborted and outputs (sid, bad—params) to S.

The following call may be made by the Adversary S (and only S).

TestPwd: On receiving a message (sid, testpwd, pw”’) from S: If pw’ is not recorded locally, then ignore this call.
Else, if pw’” = pw’ then set usurpation status as compromised, otherwise set usurpation status as interrupted.
Report the usurpation status to S. In either case reset authentication status to empty. Note that deflection
status is immaterial here, and S can make this call even if deflection status is normal.

The following two calls may also be made by the Adversary S (and only S) in any order.

Issue Access Token to Consumer: On receiving a message (sid, IssueKey2Consumer, k) from S, if the authenti-
cation status is set as valid then output a randomly generated AccessToken to P.. Else, if the usurpation
status is set as compromised, output k (provided as a parameter by the Adversary) to P.. In all other cases,
obtain fresh r < $, and output r to P. .

Issue Access Token to Service Provider: On receiving a message (sid, IssueKey2SP, k) from S: if the authenti-
cation status is set as valid then output the same AccessToken as above to Ps. Else, if the usurpation status
is set as compromised, and P! is same as P. or P/ is corrupted, output k£ (provided as a parameter by the
Adversary) to Ps. In all other cases, obtain fresh r «+— $, and output r to Ps .

Send: On receiving an input (sid,Send, m) from P which is either P, or P., check if the authentication status is
set as valid. If so, send (sid, P, |m]) to Adversary S, and after receiving a positive deliver response from S,
output (sid,Received,m) to the counter-party of p (i.e. P or Py, resp.). If instead, the usurpation status
is set as compromised and if Send originates from P. (i.e. P is P.), and P, == P, then send (sid, P, m) to
adversary S (i.e. the Adversary gets the message m). In all other cases, send (sid, P, |m|) to S and take no
further action.

Figure 13: A functionality for delegation with explicit key exchange

identity P, being supplied by the same party P,.

The ideal functionality also provides a capability for the User and the Consumer to send
messages to each other secretly. The authentication of messages originating at P. do not
need any particular mention since P, has a global public key, but what is noteworthy is that

Approved for Public Release; Distribution Unlimited.
102

the delivery of these messages is only to the User who provided the correct password to the
userid submitted to the Provider.Note that if the Adversary does not deflect the protocol,
and change userid to some other userid’, then the account corresponds to userid as provided
by P,. If however, the Adversary (say posing as another P/) hijacks (or deflects) the flow
of the protocol by injecting a different userid’, then OAuth will continue in normal fashion
only if the Adversary provides the correct password for userid’, and then it will get results
corresponding to this account.

The OAuth Ideal Functionality is defined in detail in Figure 13. In this detailed definition,
one notices that the Adversary makes the “Issue Key” calls. As already mentioned, this
makes sense as the network is assumed to be insecure, and hence the Adversary is assumed
to control the network. Thus all network flow is directed by the Adversary, including the
issuing of keys. Note that the Adversary does not control what keys are delivered (unless it
has compromised the session), but only control when and if the keys are delivered.

There are certain other intricacies related to password-based authentication, which
can be ignored in a first reading. Since the password in password-based accounts is usually
human memorizable, it can not be assumed to have full 128 bit entropy (when talking
about 128-bit security for the protocol). Thus, the ideal functionality we define must not
guarantee 128-bit security, since any implementation of such an ideal functionality would
require random 128 bit passwords.

However one can define an ideal functionality which guarantees that an Adversary can
only by-pass the 128-bit security by performing online guessing attacks. Thus, other than
these guessing attacks (which are un-avoidable), 128-bit security is guaranteed by the ideal
functionality. So, how does one define an ideal functionality where such guessing attacks are
feasible? The functionality allows the Adversary to call it with a guess of the password, and
if the guess is correct, the Adversary is allowed to set shared keys of its choosing (basically
giving it access to the secure channel being setup), and if the guess is incorrect then the
session is considered interrupted, and the legitimate parties (essentially) abort.

9.5 Implementation of Ideal Functionality F,

The implementation of the Ideal Functionality Fq g+ assuming ideal functionalities for
SSL and Secure Channels is given in Figure 14. This implementation does not assume that
the User program is just a User Agent (i.e. a browser implementing http). However, care has
been taken to make this implementation easily refined into one where the User code can just
be replaced by a browser that supports redirection. Indeed, such a implementation is given
in Fig 15. Further, another implementation where a User may instead be sent a hyper-link
of the Provider in an authenticated email (instead of a response to an https request) from
the Consumer is given in Fig 16. This implementation is a further refinement of the one
in Fig 15. Next, an implementation is given in Fig 17, where the hyper-link is sent via an
unauthenticated channel, e.g. posted on a bulletin board. this implementation is a further
refinement of the previous ones. Special attention should be paid to the notes at the bottom
of the figures.

Approved for Public Release; Distribution Unlimited.
103

Implementation of F ,ppy* using Fssi, and Fsc

Participants: The User Agent (P,), Service Provider (Ps), Consumer (F.), and Adversary A.

Initiate: On receiving (sid, initiate, Py, P.) from Z, P, initiates an SSL session with session id si Iggi with P,
and sends the message (sid, params—req, Py, P.). On receiving (sid, params—req, Py, Pc) over SSL session
st Ugi, P, outputs (sid, params—req, Py, P.). On receiving (sid, params, Ps) from Z, P. sends the message

(sid, params, Ps) to P, using SSL session szdggi

On receiving (sid, params, Ps) over sidggi, P, outputs (sid,params,Ps) to Z. On receiving

(sid, credentials, userid, pw) from Z, P, initiates an SSL session with Ps with session id sidggL and
sends (sid, initiate—req, userid, pw, P:). On receiving (sid, initiate—req,userid, pw, P:) over the
SSL session sidggL, Ps queries the environment with (sid, initiate—req, userid, P.). The environment
responds with (sid, password, pw’). Ps tests whether pw = pw’. If the check succeeds, Ps generates a
random AuthCode, records (sid, Ps, P., Authcode), and sends the message (sid, authgrant, AuthCode)
over sidg%L.

If the environment responds to Ps with bad—params, Ps just aborts.

On receiving (sid, authgrant, Authcode) over sidggL, P, sends (sid,authgrant, Authcode) to P. over a new

: - JUC2
SSL session sidggy -

On receiving (sid, authgrant, Authcode) over sidggﬁ, P. initiates a secure channel Fgc¢ with
Ps with sid szd'@% and sends Ps the message (sid,authgrant, P., Authcode). On receiving
(sid, authgrant, P., Authcode) over sidg%, Ps checks it against the recorded information, and makes
sure that the Secure channel is with the same global entity P. as recorded earlier. If the check succeeds
then it generates AccessToken and sends (sid, accesstoken, AccessToken) over szdg% It also outputs
(sid, keyCS, AccessToken) to the environment.

On receiving (sid, accesstoken, AccessToken) over sidge,, Pe outputs (sid, keyCS, AccessToken) to the envi-
ronment.

Send: On receiving (sid,send, m) from the environment, P, sends the message (sid, send,m) to the peer over SSL
session szdggi On the other hand, on receiving (sid, send,m) from the environment, P. checks that it has
obtained an AccessToken from Ps, and only then it sends the message (sid, send, m) to the peer over SSL

: : JUC2
session sidggy -

Notes: 1. P, can use the older SSL session si Ugi instead of a fresh si Ug%, if the former is still active.

2. If the Consumer also requires a password-based authentication of the User (possibly with a different
userid, password than the one which the User has with the Provider), then if a fresh sidggi is initiated,
then this password-based authentication by the Consumer must take place afresh as well.

Figure 14: OAuth v2 Authorization Grant Flow

Theorem 4 The implementation realizes the functionality Foxyr* -

Proof: We will show that for every probabilistic polynomial time (PPT) adversary A,
there exists a PPT adversary A’, such that the ensembles, corresponding to the view of
the environment in the experiment where it interacts with the adversary A’ involved with
the ideal functionality, and the experiment where it interacts with the adversary A involved
with the real implementation, are indistinguishable. The adversary A’ in the ideal world is
obtained by composing a simulator S with A itself, where S using access to ideal functionality
(as ideal world adversary) simulates the real-world to A. Further, S will ensure that the
interaction of F,ypy+ With environment is also indistinguishable with interaction of real
parties with the environment. Note that in the ideal world experiment, the parties P,, P,, P,

Approved for Public Release; Distribution Unlimited.
104

run as dummies and just pass back and forth the messages between Z and Fq 5 ypy+, whereas
in the real world, the parties P,, P., P; are running the protocol 7. Thus to simulate the
real world to A, & will need to simulate the real parties P,, P, P; to A. We will show that
S is able to do so (using access to ideal functionalityF,ypp*), and hence as far as the
environment 7 is concerned the ideal world and the real world are indistinguishable.

We will show later how & simulates SSL and SC, but for now we deal with how § simulates
the real world parties. To begin with, in both worlds, the environment Z sends the input
(sid,initiate, P,, P.) to P,. In the real-world, this prompts P, to Establish an SSL session
by calling the ideal functionality Fggr,, which in turn calls the Adversary A for a response.
This call to A needs to be simulated by &, but since in the ideal world S gets called by
Foaurm: as well, S can at that point simulate a call to A. If A responds positively in the
real-world, S in the ideal world calls F , g+ positively (note S is using A as a blackbox).
Note that this leads to an output via P. to the environment of value (sid, params-req, P,, P,)
in both worlds.

Next, in both worlds, the environment Z sends input (sid, params, Ps) to P.. In the real
world, this prompts P. to send a message via the same SSL session to P,, which is promptly
output back to the environment. In the ideal world, the simulator S gets notified by the
ideal functionality F g of this input from P, (as it is being sent to P, public delayed),
and hence S can simulate a call to A regarding the size of the message in bits (which is
what Fgsr, does in the real world). Further note that the message is also output to the
environment in the ideal world.

Similarly, as long as none of the SSL session establishments are replaced by the Adversary
by its own establishment using corrupted parties, the simulation can be done by S.

Now consider the cases where one or more of the SSL sessions sidd<} , siddst , sidSs; may
be initiated by a corrupt principal (P!). We don’t have to consider the secure channel sidge
because a secure channel authenticates both the peers, and we do not consider corruption of
the client and/or the provider here.

Case sid‘SJCSIL is initiated by a corrupt principal: First we see how an Adversary A in the
real-world accomplishes this. Assume that the Adversary has managed to corrupt a
user (lets call it P/; infact the user P! in this case may just be the Adversary). From
now on we will identify P/ with A, which goes well with our convention that there is
only one monolithic Adversary. Next, when the legitimate user P, makes an Establish
Session call to Fggr,, the Adversary A does not respond with a positive response, and
hence in a sense that SSL connection never takes place. Instead, the Adversary (via
P!) initiates a new SSL establish session call to another instance of Fggr, naming the
same consumer P, as server.

since the Adversary is making this Establish session call to Fgst,, the Simulator which
is treating A as a black box can see this call being issued. Similarly, when A (via P))
sends a message (sid, par-req) by calling the Send function of Fggr,, again S gets to
see this call in the plain, and checks for integrity of the message, and if so, just responds
positively to the ideal functionality Fq g+ ’s public delayed output to P.. Thus, in

Approved for Public Release; Distribution Unlimited.
105

Case

both worlds P. outputs the same value par-req to Z. Note that in the real-world P.
has no idea whether P, is legitimate or not, and hence as long as the message was of
proper syntax, it will output it to Z.

siddyy, is initiated by a corrupt principal: Again, as in the previous case, the Adversary
may not respond positively to a legitimate SSL establish-session request, and instead
start its own SSL session with the Provider P,. However, since it is A that sends a
message (sid, initiate—req,userid’, pw”, P) using this SSL session, S is able to see
the message. If the message is not syntactically correct then & just stops. S then
sends the message (sid, initiate—req,userid”’, P.') to Fq,ypy+ Which the latter is
expecting. If userid or P, have been altered from what F sent to &, then F sets its
deflection status to deflected. Note that this can only happen if A started its own
SSL session, although .4 may choose to keep userid and P, same (which although not
revealed to A in the real-world protocol, may still be easily guess-able).

Next, the environment receives the output (sid, initiate—req,userid”, P’) in both
the worlds. It responds with (sid, password, pw’) if the environment (i.e. P,’s wrapper
software) determines that userid” and P! are valid parameters (or it may respond
with bad-params; this case is easy to handle and we skip this case). Note that if P/
is different from P,., but still a pre-registered Consumer, then the environment is likely
to pass it as a valid parameter. Further, since the SSL session is being initiated by the
Adversary, the initial user P, is out of the picture. There are two sub-cases depending

on the deflection status of F.

normal: In this case, on the input pw’ from P,, the functionality F sets its authen-
tication status based on whether pw’ is same as pw (supplied by P,). However,
this is not what happens in the real-world, where pw’ is compared with pw”, the
latter being supplied by A. Thus & must call TestPwd function of F with pw”,
which leads to F ignoring (or clearing) the authentication status, and instead
setting the usurpation status based on whether pw’ is same as pw”. (Note that
S had obtained pw” when A issued a send message call to Fgsy, — see previous
paragraph.) Now, both the real-world and the ideal-world are in sync.

deflected: In this case, on the input pw’ from P, the functionality F does not set its

authentication status anyway, so S just needs to call F’s TestPwd function with
"

pw”.
Next in the real world, Py sends the message (sid, authgrant, AuthCode) over siddgy,
only if passwords matched, in which case in the ideal world S (since it s informed the
usurpation status) just generates random Authcode of its own and delivers it to A.

Note that, in the real-world the Adversary must initiate its own SSL session UC2
with the Consumer, otherwise the Authcode it obtained from the Provider cannot be
delivered back to the Provider via the consumer. If A indeed starts its own SSL session
with P., then since it will call the SSL session with a Send Authcode, the Simulator
can check if this Authcode is same as the one it generated for it.

Approved for Public Release; Distribution Unlimited.
106

Case

Case

sidge is initiated by a corrupt party P.. In the real-world P, checks that this P! is
same as the parameter sent to it in siddgy , or more precisely its replacement initiated
by Adversary A. Thus, P, only continues with the protocol in the real-world if siddg;,
was replaced by Adversary, which had passed a P. then and which was validated by
the Environment (i.e. the environment did not respond with bad—params. In such
a scenario, recall that the ideal-world has set its deflection status as deflected (note
corrupt P! is not same as P.). This means that the authentication status is empty.
Now, if in the real-world P’ also happens to report the correct Authcode in sidgg, then
P, and P! (i.e. A) will end up sharing a common random AccessToken. To emulate
this situation, § in the ideal world just calls Issue AccesToken to Provider with a
randomly chosen k. This would lead to setting the AccessToken of the Provider to &
if usurpation status was compromised (i.e. pw” = pw’) and P, is corrupted (which it
is). The simulator S also sends a message to P. (i.e. A) (accesstoken, k) under the

appropriated sidd¢:, thus completely emulating the real-world.

sidgg], is initiated by a corrupt principal: If in the real-world the first two SSL sessions
were legitimate, and only this one is initiated by A then A can provide the correct
Authcode to Consumer only with negligible probability, as Authcode is generated ran-
domly. Thus, in this case in the real-world, the Provider and hence the Consumer will
not output a common and random AccessToken. Since, the Simulator S knows that
the first two SSL sessions were legitimate, and this one is not, it just does not make
the calls to Fq,ypp+’s Issue Access Token functions.

If on the other hand, the SSL session between User and Provider was taken over by
the Adversary, then, we know from the previous case that the Adversary knows the
usurpation status, and in case of compromised status, has provided a random Authcode
of its own. If A in this corrupted SSL session sends the same Authcode to P,., the S
gets to see that, and hence it means in the real world since P, and P; behave honestly,
P, will end up issuing valid (and randomly generated) AccessToken to P.. So, S just
makes the Issue AccessToken calls for both Consumer and Provider with the same
randomly chosen value k. Thus, the view of the Environment in both the worlds will
be same.

As for the (sid,Send,m) values given by the Environment to P. in the real world,
note that P, only sends it to the peer if it had obtained an AccessToken, which is
only possible if if the password pw” the Adversary had provided matched the password
P, had produced, which means the usurpation status is compromised. Thus in this
situation, if this last SSL session was started by the Adversary, in the real world the
Adversary would get the message m, and the same would hold in the ideal world.

Approved for Public Release; Distribution Unlimited.
107

Implementation of 7,y using HT'TPS Redirection

Participants: An arbitrary User Agent P,, a Service Provider Ps, a Consumer P., and Adversary A. The Service
Provider and Consumer are assumed to have SSL supporting URIs with PKI certificates.

Initiate: On receiving an input (sid, initiate, Py, Pc) from the environment, P, initiates an https session with
session id si g‘élL with the URI of P. and query parameters (sid, params-req, Py, P:).

On receiving (sid, params-req, Py, P;) over https szdg‘élL which it outputs to the environment, P. obtains the
input (sid, params, Ps) from the environement. Then P. responds with (sid, redirect uri:Ps, client-params)
to P, using SSL session sidgglL. Since Ps is a globally known entity, the Consumer P. can obtain a valid
https URI of Ps. The query parameters called client-params includes the https redirection URI of P. itself,
and other credentials of P.. Since the response is a redirection https URI, the user agent P, automatically

initiates an SSL session with Ps; with session id sidggL and query parameter (sid,client-params).

On receiving this message, Ps responds to P, over sidggL, with a login-password form, to which the user agent
responds by outputting the form along with Ps’s identity to the environment (which in this case is possibly
just a human User along with a certificate checker). The Environment (or the human) responds with a userid
and password pw, which the User agent forwards to Ps using si SEL' Next, Ps queries the environment with
the received userid along with client-params (since P, is also a globally known entity, this is just equivalent
to outputting the identifier P, itself), to obtain a password pw’ corresponding to this userid (or a bad-params
response). On pw validation (i.e. pw = pw’), Ps generates a fresh random number Authcode, and saves
(sid, initiate, Ps, Pe, Authcode) in its local memory, and responds over sidggL with the redirect URI of P.
(obtained from client-params) and query parameter (sid, authgrant, AuthCode).

Since the user-agent P, receives a redirect URI, which is an https URI of P, it automatically starts a new

SSL session sidgcszL with P, over which it sends query paramter (sid, authgrant, AuthCode). On receiving

sid, authgrant, Authcode) over sid3¢ , P, initiates a secure channel Fgo with Ps with sid sidSS, and sends P
g SSL SC

the message (sid, authgrant, P., Authcode).

On receiving (sid, authgrant, P., Authcode) over sidg%, Ps checks it against the recorded information. If the
check succeeds then it generates a random AccessToken and sends (sid,accesstoken, AccessToken) over
suig% It also outputs (sid, KeyCS, AccessToken) to the environment.

On receiving (sid, accesstoken, AccessToken) over sidgsc, P. outputs (sid, KeyCS, AccessToken) to the en-
vironment.

Send: This is same as in Fig 14.

Notes: 1. The User agent may check if the rediection URI of P, is same as the URI P, it used in SSL session
sidgglL, and if that session is still alive, it can use that same session instead of a new s¢dgg2L

Figure 15: OAuth v2 Authorization Grant Flow

9.6 Summary

This section described the modeling of the key web security protocol OAuth2.0. We were
able to write down a proof of correctness of an important mode of operation of this proto-
col. This is timely since the protocols is being considered for standardization and a formal
proof will give implementers the right assurance. Our analysis has derived specific security
recommendations which should be incorporated as implementation guidelines for secure re-
alization. Besides this, we have demonstrated again that UC can be used outside of the
domain of purely cryptographic protocols.

Approved for Public Release; Distribution Unlimited.
108

Implementation of 7,y using Authenticated E-mail and HTTPS
Redirection

Participants: An arbitrary User Agent P, a Service Provider Ps, a Consumer P., and Adversary A. The Service

Initiat

Notes:

Provider and Consumer are assumed to have SSL supporting URIs with PKI certificates.

e: On receiving an input (sid, initiate, Py, Pc) from the environment, P, initiates an https session with
session id szdg%IL with the URI of P. and query parameters (sid, params-req, Py, P:).

On receiving (sid, params-req, Py, P:) over https szdg%IL which it outputs to the environment, P. obtains the
input (sid, params, Ps) from the environement. Then P. responds with (sid, uri: Ps, client-params) to P, using
Favutu(Pe), Since Ps is a globally known entity, the Consumer Pc can obtain a valid https URI of Ps. The
query parameters called client-params includes the https redirection URI of P, itself, and other credentials
of P.. The user agent P, on receiving this authenticated message from P, initiates an SSL session with Ps
(using the supplied uri of Ps) with session id sidg];L and query parameter (sid, client-params).Technically,
the User must click on the supplied link, but we will assume the worst case that the user always clicks on the
link.

On receiving this message, Ps responds to P, over sidg%L, with a login-password form, and the rest of the
implementation is same as in Fig 15

1. The same notes as in Fig 15 apply here.

2. The ideal functionality FauTh is defined in the appendix. It essentially, delivers a message only if
the sender is P., thus guaranteeing the receiver that the message received came from P.. This, for
example, can be the case where the User has a trusted email server, and the e-mail received has a
certified signature of Pe.

3. Note that session si g%lL need not be an SSL session, but si %2L must be an SSL session.

Figure 16: OAuth v2 Authorization Grant Flow in Email Settings

Approved for Public Release; Distribution Unlimited.
109

Implementation of 7,y using Bulletin Board and HTTPS Redirection

Participants: An arbitrary User Agent P,, a Service Provider Ps, a Consumer P., and Adversary .A. The Service

Provider and Consumer are assumed to have SSL supporting URIs with PKI certificates.

Initiate: On receiving an input (sid, initiate, Py, P.) from the environment, P, initiates an https session with

Notes:

session id szdg%IL with the URI of P. and query parameters (sid, params-req, Py, P:).

On receiving (sid, params-req, Py, P;) over https szdg‘élL which it outputs to the environment, P. obtains the
input (sid, params, Ps) from the environement. Then P. responds with (sid, uri:Ps,client-params) to P,
using an un-authenticated and unencrypted channel. Since Ps is a globally known entity, the Consumer Pc
can obtain a valid https URI of Ps. The query parameters called client-params includes the https redirection
URI of P. itself, and other credentials of P.. The user agent P, on receiving this un-authenticated message
from P, initiates an SSL session with Ps (using the supplied uri Ps) with session id sidggL and query parameter
(sid, client-params).Technically, the User must click on the supplied link, but we will assume the worst case
that the user always clicks on the link.

On receiving this message, Ps first checks that the client-params has the URI of some P. along with its
Application name which are globally known (e.g. via PKI). Next, Ps responds to P, over sidggL, with a
login-password form along with the Application name of P. displayed on the form, to which the user agent
responds by outputting the form along with Ps’s identity to the environment (which in this case is possibly
just a human User, along with a PKI certificate checker). We will assume here that the User Agent gets
human assist in verifying the the P. displayed on the form is the same as the P. initially supplied to the
User-agent in the initiate call.More rigorously, this mode would require a different ideal functionality where
both Ps and P. are provided in the params output to P,, instead of P, providing P. in the initiate
call.

The Environment (or the human) responds with a userid and password pw, which the User agent forwards
to Ps using singSL. Rest of the implementation is same as in Fig 15

1. The same notes as in Fig 16 apply here.

Figure 17: OAuth v2 Authorization Grant Flow in Bulletin Board Settings

Approved for Public Release; Distribution Unlimited.
110

Ideal Functionality Flow F iy
An example flow of the Ideal World Implementation involving
Foaurn*s With Adversary mostly responding positively. The symbol
Z stands for the Environment, F for the ideal functionality, and S for
the Adversary.

initiate, Py, Pe
Babieehbd bl L LI

P, — F — S
“+ve
— P — Z
params, Pg
S — F — P.
+ve
z — P, — F
userid,pw initiate—req,userid, P,
Z P, — . S
wserid’ .,Pé
— ¢

if (userid’, P.) # (userid, P.)
set deflected = true

s 1t
initiate—req,userid’,P,

F — PS (_pw Z
if not deflected and pw == pw’

set auth = valid
initiate-oauth
F Anftiateroauth, S

IssueKey2Cons, k
— T

F S
if auth = valid
AccessToken «— $
z AccessToken P, AccessToken F
IssueKey2Prov, k
FooomER T S
if auth = valid
z AccessToken P, AccessToken F
Send,m
z =0 R — F
. . Send, P.,|m
if auth = valid ¥> S
+ve
— T
Received,m Received,m
F E— Py z

Figure 18: Example flow of the Ideal World Implementation

Approved for Public Release; Distribution Unlimited.
111

Implementation of F, g+ using Fssr,
An example flow of the Real World Realization of F , g+ using Fssr
and Fgc, with Adversary mostly responding positively.

initiate, Py, Pe

Estab-sess, Py, P,
Z Py wee FISGL — A
+ve
Estab-re:
q Pc
A Fégﬁl Estab-sess Pc
Send, (par-req) params-req
p, ~——PTRL pyol — Pe B
P Send params, P,
Z = Py — FUG (el Pe e g
cred,userid,pw Estab-sess, Py, Ps
Py = F& — A
+ve
Estab-req
Estabreg P, — =z
Estab-
.A fég]: Ps stab-sess z
Send, (userid,pw, P, userid, P,
P, ()]:ég]: Py c z
assword,pw’
Py JEIOTRY 2
if pw == pw’
Authcod Send, Authcode
P, JLutheode ngli — AuthCode — $
Estab-sess, Py, P.
P, wstc féé(EQ A
+ve
Estab-re:
q P, =z
uc2 Estab-sess
A — Fasi: — P. —_— Z
Send, AuthCode
p, mtawicer g .
Estab-sess, P, P, Estab-sess, Ps, P,
P — 22, Fsc 22 Ps
Send, Authcode Authcode
p, Smddutheode gl Authcode, P,
if Authcode same
= AccessToken P, AccessToken]'—SC Send, AccessToken AccessToken — $ AccessToken =
Send,m
Smem, R
. Send,m Received,m Received,m
if AccessToken # L — F&(I:Q _ Py — Z

Figure 19: Example flow of the Real World Realization of F g+

Approved for Public Release; Distribution Unlimited.
112

10 Proof Automation

One of the goals of the Montage project was to make it easy for software designers and
developers to adopt the framework. As we have seen in the previous chapters the key task
in using the UC framework is the proof of equivalence that the real world correctly realizes
the specification in the ideal world. In typical proofs of security in the UC framework we
observe - firstly, it is tedious and often non-trivial to see that all possible scenarios in real
execution have been analyzed; secondly, it is mostly straightforward to analyze an individual
scenario, but tedious to write down. Therefore there is a strong motivation for investigating
automation in the UC framework arising out of both necessity and feasibility.

This section describes a very ambitious effort to study the automation of proofs of security
in the UC framework. To the best of our knowledge, ours is the first work to attempt this.
The general problem is undecidable in the strong sense as it is the same as deciding if two
programs are equivalent. What we show is that there are many meaningful restrictions of
the problem which are decidable and further, these subsets are sufficient to model many real
cryptographic protocols. While we are still very far from automating systems which are as
complex as the filesystem or even the OAuth protocols, this is a very promising set of initial
results.

10.1 Problem Statement

To make this section self-contained we will recall some of the basic UC terminology as well
as what an application of the UC framework entails in order to motivate the automation
problem. The reaader who is already knowledgeable about the details of the UC framework
can directly skip to Section 10.1.2.

10.1.1 Universal Composability

The Universal Composability (UC) framework [Can] is a formal system for proving security
of computational systems such as cryptographic protocols. The framework describes two
probabilistic games: The real world that captures the protocol flows and the capabilities of
an attacker, and the ideal world that captures what we think of as a secure system. The
notion of security asserts that these two worlds are essentially equivalent.

The real-world model. The players in the real-world model are all the entities of interest
in the system (e.g., the nodes in a network, the processes in a software system, etc.), as well
as the adversary A and the environment Z. All these players are modeled as efficient,
probabilistic, message-driven programs (formally, they are all interactive Turing machines).

The actions in this game should capture all the interfaces that the various participants
can utilize in an actual deployment of this component in the real world. In particular,
the capabilities of A should capture all the interfaces that a real-life attacker can utilize in
an attack on the system. (For example, A can typically see and modify network traffic.)

Approved for Public Release; Distribution Unlimited.
113

The environment Z is responsible for providing all the inputs to the players and getting
all the outputs back from them. Also, Z is in general allowed to communicate with the
adversary A. (This captures potential interactions where higher-level protocols may leak
things to the adversary, etc.)

The ideal-world model. Security in the UC framework is specified via an “ideal function-
ality” (usually denoted F), which is thought of as a piece of code to be run by a completely
trusted entity in the ideal world. The specification of F codifies the security properties
of the component at hand. Formally, the ideal-world model has the same environment as
the real-world model, but we pretend that there is a completely trusted party (called “the
functionality”), which is performing all the tasks that are required of the protocol. In the
ideal world, participants just give their inputs to the functionality F, which produces the
correct outputs (based on the specification) and hands them back to the participants. F
may interact with an adversary, but only to the extent that the intended security allows.
(E.g., it can “leak” to the adversary things that should be publicly available, such as public
keys.)

UC-Security. An implementation P securely realizes an ideal functionality F if no
external environment can distinguish between running the protocol P in the real world and
interacting with the trusted entity running the ideal functionality F in the ideal world. That
is, for every adversary A in the real world, there should exist an adversary A’ in the ideal
world, such that no environment Z can distinguish between interacting with A and P in
the real world and interacting with A" and F in the ideal world. A remarkable feature of
UC-Security is that the security guarantees are preserved under modular compositions.

With this background we are ready to state the proof automation problem.

10.1.2 Proof Automation Problem

As discussed, the real protocol is a distributed system which can be modeled as a set of
algorithms Py, Po, - - - running concurrently at various locations in the network. Typically
these are roles like clients, servers and peers running code according to the rules of the pro-
tocol. The messages they exchange are in the open and can be arbitrarily blocked, modified,
rerouted or mixed by the adversary. To preserve integrity and confidentiality in the insecure
channel, the parties may use cryptographic primitives like signatures and encryptions. Each
party may run one or more instance of the roles (algorithms P;) concurrently. A party may
be client in one session and server in another.

The ideal functionality is also a set of algorithms Fi, Fs, - - - which abstract the oracular
computations of the ideal trusted entity. This is an abstract specification of the security
of the system. For example, secure channels may be abstracted away by the functionalities
themselves transmitting messages between parties, without the adversary knowing anything
about the message, except perhaps the length. Multi-party computations can be abstracted
by all parties submitting their individual arguments to a central functionality (“a trusted

Approved for Public Release; Distribution Unlimited.
114

third party”), and the central functionality then computing the function over the arguments
and transmitting the result to all the parties.

A proof of security is to show that all possible adversarial behavior with the real protocol
P can be efficiently translated to an adversarial behavior with the functionality F, thus
effectively showing that if the functionilty captures the security requirements, so does the
protocol.

Therefore, formally, a proof of security in the UC model boils down to the following:

As input, we are given a set of principals and two sets of algorithms:
1. Real Protocol: Set of algorithms P = {Py, Py, - }.
2. Ideal Functionality: Set of algorithms F = {Fy, Fa,--- }.

We say that P realizes F if it is possible to construct an algorithm S, called a simulator,
that invokes the functions in F, such that the following holds: For any sequence of calls to
algorithms in P, S can come up with a sequence of calls such that the “effect” is “same”.

Note that it is not sufficient to construct a simulator for every fixed call sequence to the
P;’s. This is because the adversary may be adaptive and decide to call a certain P; based on
the messages it has seen so far and the random coins it is using. Hence, the simulator has
to be adaptive too. Technically, for any prefix of a call sequence, the simulator should be
able to come up with a strategy such that it can match the adversary no matter which path
it takes after the prefix. In this article, we focus attention on constructing simulators for a
fixed call sequence only. How to simulate adaptive adversaries remains an open problem.

The words “effect” and “same” have a technical explanation which we will get to in
the subsequent section, but here the reader can just think of them as feasibly observable
properties. An example “effect” can be an output quantity at the end and “same” could
be identical value or close enough probability distribution. The standard model of protocol
execution, captured in [Can], consists of a set of distributed algorithms representing the
parties running the protocol, plus an algorithm representing the adversary. The adversary
controls a subset of the parties, which in general may be chosen adaptively throughout
the execution. In addition, the adversary has some control over the scheduling of message
delivery. The parties and adversary interact on a given set of inputs and each party eventually
generates local output. The concatenation of the local outputs of the adversary and all parties
is called the global output. In the ideal process for evaluating some function f all parties
ideally hand their inputs to an incorruptible trusted party, who computes the function values
and hands them to the parties as specified. Here the adversary is limited to interacting with
the trusted party in the name of the corrupted parties. Protocol P securely evaluates a
function f if for any adversary A (that interacts with the protocol) there exists an ideal-
process adversary S such that, for any set of inputs to the parties, the global output of
running P with A is indistinguishable from the global output of the ideal process for f with

Approved for Public Release; Distribution Unlimited.
115

adversary S.

The proof automation problem is to come up with the simulator algorithm S given F and
P, or show that none exists. Consider a fixed call sequence of P. The strategy we develop
is the following:

1. Finiteness Argument: We show that there is a bounded set of finite call sequences
of F that captures all possible effects of unbounded call sequences.

2. Theorem Proving: We enumerate all such call sequences and check for equivalence
with the given call sequence of P.

3. Output: If there is a match, we output the simulator. If none of the elements of
this bounded set matches, then no simulation is possible.

Of course, the Finiteness Argument and Equivalence Checking are only possible only in
restricted program constructs - otherwise the problems become equivalent to known undecid-
able problems: If the F’s were allowed to do operations like simulate any turing machine’s
tape operations, all possible effects cannot be obviously be captured by bounded call se-
quences to F. Moreover, given a simulator description and the protocol description, Equiv-
alence checking is the same or harder than general program equivalence checking, which is
known to be undecidable.

The technical challenge is to come up with program classes that have the property re-
quired for a finiteness argument. As we show in the subsequent sections, even with a fair
degree of restrictions we step into undecidability. However, we also come up with interesting
language classes, motivated by cryptography, which have the finiteness property.

We sketch a general decision procedure in Figure 21, with the high level functions ex-
plained shortly. The components that go into the correctness and operation of this procedure
are as follows:

10.1.2.1 Finiteness Argument. This component is a mathematical proof that a bounded
set of finite call sequence exists for the given language class. This needs to be done once per
language class.

10.1.2.2 Call Sequence Enumeration. This component is an algorithm that given F,
generates call sequences that include all the call sequences in the bounded set for the given

F.

10.1.2.3 Equivalence Checking. This component is an algorithm which checks whether
a given call sequence matches the given protocol serialization.

Approved for Public Release; Distribution Unlimited.
116

Real Execution: General Structure of Simulator:

Design P Simulator S
in X, P’y
p calls to F
1 1’
send x sendx’y
[P2
recv % recv X,
Ps P'3
out Xy callsto F

e Capture the equivalence of the communication

Spec State Space: behavior of the players.
f
¢ In between the adversary/environment
interactions, the simulator can call the component
“spec” arbitrarily often and in any order

* Prove that for the given language, the “effect” of
an arbitrary call sequences can be modeled by a
call sequence belonging to a finite set.

Fiomisenr PUORAKS BRHOMon Otk e
117

Algorithm GenerateSimulator(F,P)
Repeat (Fy, Fo, - - - , Fi) < CallSequence Enumerator(F)
Simulator Description < ()
Repeat in sequence F; « (Fi, Fa, -+, Fi)
Arguments «— GetArguments(Simulator Description)
t — F;(Arguments)
Add t to SimulatorDescription
Until end of sequence
Call Theorem Prover to check if SimulatorDescription matches P.
If so, output SimulatorDescription and halt
Else continue
Until call sequence enumeration is complete

Output “No simulator exists.”

Figure 21: Structure of a general decision procedure

For each functionality F; in the call sequence, computed iteratively by the function
CallSequence Enumerator in Figure 21, the simulator computes arguments for the invo-
cation of F; and stores the output obtained. The complexity in mathematically analyzing
the call sequence structures arise from the following: firstly, each invocation may build up
state in the local storages of the functionalities, which may be persistent across calls. Sec-
ondly, computing arguments (the Get Arguments function in Figure 21) for the next function
invocation has to be designed carefully.

The Theorem Prover takes a given simulator description (Simulator Description in Fig-
ure 21), and checks for equivalence against P. This consists of checking symbolically whether
interaction and exchange of messages with the environment and the adversary are equivalent
for all possible inputs from the environment and adversary.

10.1.3 Motivating Example.

Password-based key exchange is an important security problem which has been studied
extensively in cryptographic research [BM93|, and which brings out the power of the UC
framework particularly well. Canetti et al [CHKT05] proposed an Ideal Functionality for
password-based key exchange which is formally described in Figure 22.

Consider two parties P; and P; that wish to come up with a common cryptographically

Approved for Public Release; Distribution Unlimited.
118

Functionality FpwkE

The functionality Fprwkg is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, P;, P;, pw,role) from party P;:
Send (NewSession, sid, P;, P;,role) to S. In addition, if this is the first NewSession
query, or if this is the second NewSession query and there is a record (Pj, P;, pw'’),
then record (P;, Pj, pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, P;, pw’) from the adversary S:
If there is a record of the form (P;, Pj, pw) which is fresh, then do: If pw = pw’, mark
the record compromised and reply to S with “correct guess”. If pw # pw’, mark the
record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, P;, sk) from S, where |sk| = k:
If there is a record of the form (F;, Pj, pw), and this is the first NewKey query for P,
then:

e If this record is compromised, or either P; or P; is corrupted, then output (sid, sk)
to player P;.

e If this record is fresh, and there is a record (Pj, P;,pw’) with pw’ = pw, and
a key sk’ was sent to Pj, and (P}, P;,pw) was fresh at the time, then output
(sid, sk') to P;.

e In any other case, pick a new random key sk’ of length k and send (sid, sk’) to
P,

Either way, mark the record (P;, Pj,pw) as completed.

Figure 22: The password-based key-exchange functionality Fowke

strong key based on the fact that they share the same password. The idea is to capture
the fact that modulo the adversary outright guessing the password exactly during an active
session between the parties, it has no control (or information) on the key being generated. It
is allowed to interrupt sessions by tampering with the messages being exchanged, but doing
so only results in the parties ending up with different uniformly randomly distributed keys.
If, however, the session is not interrupted, the parties end up with the same key which is
distributed uniformly and randomly and is not controlled by the adversary.

In the following discussion, we will overlook the session ids for simplicity although it
is straightforward to add them. We describe a protocol Ilicpwie, in Figure 23, which is a
candidate to realize Fpwkr. This is a protocol based on the Ideal Cipher model [BPROO].
In the ideal cipher model, the results of two decryptions are the same if the key is identical.
Otherwise, the results are uniformly and independently random. The protocol is symmetric

Approved for Public Release; Distribution Unlimited.
119

from the perspective of both the participants - so we describe the actions of just one party
P;. Both parties get a password from the environment £. Party P, generates a random
number ry, encrypts it and sends the ciphertext ¢; to the peer. When it receives a response
c, it first checks whether its own message was reflected. If so, it outputs a random key to
the environment. Otherwise, it decrypts the response using its password pw; and xors the
plaintext with ;. The resulting quantity is output as its key to the environment.

Party P, Adv Party P,
E E
| pwy | pws
ry— $ ro — $
C1 — ENCpy, (11) Cy +— ENCpyy, (12)
=N &
if (dy ==c;) then sk; «— $ if (df ==) then sky «— §
else else
dy decpwl (6,2) dy — d@pr2 (Cll)
ski —r1 @ dy sky < 19 @ dy
L sky L sko
E E

Figure 23: Protocol for Password-based Key Exchange using Ideal Cipher.

Consider the following ideal functionality for the ideal cipher primitive. The functionality
takes two arguments: a key and a plaintext. It has a table where each entry is a triplet
(key, plaintext, ciphertext). The table is initially empty. It supports two subroutines:
encrypt(key, plaintext) and decrypt(key, ciphertext). The encrypt subroutine, given input
(key, plaintext), generates a random number 7, stores (key, plaintext,r) in the table and
outputs r. The decrypt subroutine, given input (key, ciphertext), looks up if there is an
entry (key, p, ciphertext) in the table. If so, it outputs p. Otherwise, it generates a random
number r, stores (key, r, ciphertext) in the table and outputs 7.

Now consider the real-world scenario where the adversary intercepts the first message c;
and changes it to ¢} before transmitting to P;. The adversary’s action may involve querying

Approved for Public Release; Distribution Unlimited.
120

the ideal cipher in the hybrid model. More importantly, if the password is weak, the adversary
maybe able to guess the password, and hence a proper simulation would require the simulator
to extract this password guess from the call to the ideal cipher, and use that in the TestPwd
subroutine of Fowke.

We will revisit this example in Section 10.5.2 in more technical details when we have the
necessary context. In the current context, we instantiate the generic steps of our technique
that we outlined.

Finiteness Argument. We demonstrate that for the operators used in the description
of the protocol and the functionality, that is, equality testing, conditional branches, xors,
random number generation and bounded storage, the number of possible simulators is finite.

Call Sequence Enumeration. These simulators use a sequence of a priori described
operations. Therefore, the way to generate a simulator is to generate all possible sequences
within a fixed bound derived from the finiteness argument step.

Equivalence Checking. In essence, the simulators are special multivariate polynomials on
finite fields of characteristic two. We show that these special polynomials can be canonically
described over a well behaved basis. Thus to check equivalence of the simulator with the
real protocol execution, we just check if they split equivalently over the basis.

10.2 Overview of Results

The language classes we investigated are inspired by formulations of standard cryptographic
primitives as we will exemplify in Section 10.5.2. In exploring various choices of languages,
we came up with both negative and positive results:

Negative results: We begin with the following observation:

Observation 19 If both the ideal and real systems are allowed to be arbitrary Turing Ma-
chines, then the problem becomes as hard as deciding program equivalence, which is undecid-

able.

Therefore we have to restrict the class of systems that we allow in order to come up with
decision procedures. To formalize the restrictions, we fix a language to describe the systems.
The language is restricted in the sense that one cannot frame arbitrary turing computations
in them, but at the same time it allows specification of programs motivated by cryptographic
protocols.

We showed that even under fairly restricted scenarios, the problem remains undecidable.
In particular, this arises when unbounded table lookup/storage operations are allowed (not
even random access, but just storing and detecting whether some string is there in the
table), even when there are no arithmetic operations, loops in subroutines or random number
generation. Formally, we have the following theorem:

Approved for Public Release; Distribution Unlimited.
121

Theorem 5 (An Undecidable System) Let L be a language with input / outputs to the
environment, send / receives to the adversary, conditional with equality checking of strings
and table storage/lookup. We are given a real protocol P and a ideal functionality F with all

subroutines described in L. We show that it is impossible to algorithmically decide whether
P realizes F .

Positive results: We restricted the language further to avoid the undecidable territories
and came up with a decision procedure for a language that allows environment input /
outputs, adversary send / receives, assignment statements, xor operations, random number
generation and finite local storage. We will see in Section 10.5.2 how these operators are
used in specification of protocols and functionalities. Formally, we have the following result:

Theorem 6 (A Decidable System) Let L be a language with input / outputs to the en-
vironment, send / receives to the adversary, assignment statements, xor operations, random
number generation, conditional statements, constant number of storage elements and unin-
terpreted functions. We are given a real protocol P and a ideal functionality F with all
subroutines described in L. We develop a decision procedure to find whether P realizes F.
We restrict P to be a single program, whereas F can have multiple subroutines which can be
called an unbounded number of times in any arbitrary order.

10.3 Restriction to Language Classes

The language classes we look at have operators motivated by UC models of cryptographic
primitives. As an example, we reproduce below the description of a Universally Compos-
able Commitment Scheme from [CF01] which realizes the Ideal Commitment Functionality.
Commitment is one of the most basic and useful cryptographic primitives. On top of being
intriguing by itself, it is an essential building block in many cryptographic protocols, such as
Zero-Knowledge protocols, general function evaluation protocols, contract-signing and elec-
tronic commerce, and more. The basic idea behind the notion of commitment is attractively
simple: A committer provides a receiver with the digital equivalent of a “sealed envelope”
containing a value z. From this point on, the committer cannot change the value inside the
envelope, and, as long as the committer does not assist the receiver in opening the envelope,
the receiver learns nothing about x. When both parties cooperate, the value x is retrieved
in full.

The Ideal Commitment functionality is described as follows:

Approved for Public Release; Distribution Unlimited.
122

Functionality F,,:

F.,, proceeds as follows, running with parties P;,--- , P, and an adversary S.

1. Upon receiving a value (Commit,sid, P;, P;,b) from P;, where b € {0, 1}, record

the value b and send the message (Receipt, sid, P;, Pj) to P; and S. Ignore any
subsequent Commit messages.

. Upon receiving a value (Open, sid, P;, P;) from P;, proceed as follows: If some value
b was previously recorded, then send the message (Open, sid, P;, P;,b) to P; and S

and halt. Otherwise halt.

The commitment phase is modeled by having F,,,, receive a value (Commit, sid, P;, P;,b),
from some party P; (the committer). Here sid is a Session ID used to distinguish among
various copies of Fi,n,, P; is the identity of another party (the receiver), and b € {0,1} is
the value committed to. In response, Fi,,, lets the receiver P; and the adversary S know
that P; has committed to some value, and that this value is associated with session ID sid.
This is done by sending the message (Receipt, sid, P;, P;) to P; and S. The opening phase
is initiated by the committer sending a value (Open, sid, P;, P;) to Fiop. In response, Fiop,

hands the value (Open, sid, I, P;, b) to P; and S.
The protocol UCCo,erime, Which is claimed to realize F,,,,, is described below:

Commitment Scheme UCCo,eTime:

public string:
o « random string in {0, 1}*"
pko, pk1 «— keys for generators Gpr,, Gpr, : 10,1} — {0, 1}*"

commitment for b € {0,1} with SID sid:
compute Gy, (r) for random r € {0,1}"
set y = Gpp, (1) for b =0, or y = Gy, (1) B o for b=1
send (Com, sid, y) to the receiver

Upon receiving (Com, sid, y) from P;, P; outputs (Receipt, sid, cid, P;, P;)

decommitment for y:
send b, r to the receiver
receiver checks y == Gy, (1) for b =0, or y == G, (r) @ o for b= 1.
If the verification succeeds then P; outputs (Open, sid, P;, P}, b).

Approved for Public Release; Distribution Unlimited.
123

Let KGen denote an efficient algorithm that on input 1" generates a random public key
pk and the trapdoor td. G, is a pseudorandom generator derived from pk. An important
feature of this generator is that given the trapdoor td to pk it is easy to tell whether a
given y € {0,1}"" is in the range of G,;. The public random string in our scheme consists
of a random 4n-bit string o, together with two public keys pkg, pk; describing trapdoor
pseudorandom generators Gpi, and Gp,; both generators stretch n-bit inputs to 4n-bit
output. The public keys pky, pk; are generated by two independent executions of the key
generation algorithm K Gen on input 1™.

The proof of realization of F,,, by UCCpopecrime is by constructing a simulator which
simulates the actions of UCCo,erime by just invoking F,,,,, such that no environment can
tell whether it is interacting with a real instance of UCCp,crime Or the simulator invoking
Foom.

As we can see, the following operators are used in describing the protocols:
1. Inputs from the environment and outputs to the environment.

2. Send and receive messages with the adversary.

3. Random number generation.

4. Assignment operations.

5. Taking XOR of two bitstrings.

6

. Conditional execution.

Public-key encryption and signature are two important primitives which are modeled
using table storage and lookups. The following describes the Ideal Functionality for signature
schemes [Can):

Functionality Fj;g:

e Key Generation: Upon receiving a value (KeyGen, sid) from some party S, ver-
ify that sid = (S,sid") for some sid’. If not, then ignore the request. Else,
hand (KeyGen, sid) to the adversary. Upon receiving (Algorithms, sid, s,v) from
the adversary, where s and v are descriptions of feasible algorithms, output
(Verification Algorithm,sid,v) to S.

e Signature Generation: Upon receiving a value (Sign, sid, m) from S, let 0 = s(m),
and verify that v(m,s) = 1. If so, then output (Signature,sid,m,o) to S and
record the entry (m, o). Else, output an error message to S and halt.

e Signature Verification: Upon receiving a value (Verify,sid,m,o,v’) from some
party V', do: If v/ = v,v(m, o) = 1, and no entry (m,¢’) for any ¢’ is recorded, then
output an error message to S and halt. Else, output (Verified, sid, m,v'(m, o)) to
V.

Approved for Public Release; Distribution Unlimited.
124

The basic idea of Fj;, is to provide a “registry service” where the signer S can register
(message, signature) pairs. Any party that provides the right verification key can check
whether a given pair is registered. Fj;, takes three types of inputs, which correspond to
the three basic modules of a signature scheme: key generation, signature generation, and
signature verification. Having received a key generation request from a party S, Fy;, first
verifies that the identity S appears in the STD. This convention essentially guarantees that
each party can invoke Fy;, with an SID that no other party can use. Next, Fj;, asks the
adversary to provide two descriptions of algorithms: A polynomial-time probabilistic signing
algorithm s, and a polynomial-time deterministic verification algorithm v. It then outputs
to S the description of the signing algorithm s. Finally, it invokes algorithms s and v, and
maintains a running instance of each.

Upon receiving a request from party S (and only party S) to sign a message m, Fj;, first
obtains a “formal signature string” by running s on input m and fresh random input. It
then verifies that v(m, o) = 1. If so, it outputs the signature string o to S and records the
pair (m, o). Else, Fy;, outputs an error message and halts.

Upon receiving a request from some arbitrary party V to verify a signature o on message
m with verification algorithm (or, key) v', F;, proceeds as follows. It first checks if the input
consists of a forgery, namely if v = v,v(m, o) = 1, and S is uncorrupted and never signed
m in the past (namely, the pair (m,o’) is not recorded, for any o’). If so, Fy;, outputs an
error message and halts. Else, it outputs v'(m, o).

The fact that the verification algorithm v is deterministic guarantees consistency, namely
that all verification requests for the same triple (m, o,v’) are answered in the same way, even
if made by different parties at different times. Verifying that v(m, o) = 1 at signature gen-
eration time guarantees completeness, namely that if a signature was generated “honestly”
(i.e., via Fy;,) then it will verify. Unforgeability is guaranteed by the check for forgery at
verification time.

10.4 Decision Procedures

In this section, we develop decision procedures for a specific language which includes xor,
conditional and random number generation operations over finite fields of characteristic two.
To describe the semantics of this language, we consider multivariate pseudo-linear functions,
which are functions computed by branching programs over data objects from additive group
of fields of characteristic two. The conditionals in such programs are built from equality
constraints over linear expressions, closed under negation and conjunction.

Let f1, fa, ..., fr be k pseudo-linear functions in n variables, and let f be another pseudo-
linear function in the n variables. We show that if f is a function of the given k functions,
then it must be a pseudo-linear function of the given k functions. This generalizes the
straightforward claim for just linear functions. We also prove a more general theorem where
the k functions can in addition take further arguments, and prove that if f can be represented
as an iterated composition of these k functions, then it can be represented as a probabilistic
pseudo-linear iterated composition of these functions. Proceeding further, we generalize

Approved for Public Release; Distribution Unlimited.
125

the theorem to randomized pseudo-linear functions. Additionally, we allow f itself to be
a randomized function, i.e. we give a procedure for deciding if f is a probabilistic sub-
exponential in m time iterated function of the given k randomized functions, and the decision
procedure runs in computational time independent of m.

These theorems have implications for automatic proving of universally-composable se-
curity theorems for ideal and real functionalities composed of if-then-else programs with
(uniform) random number generation and data objects from additive group of GF(2™). The
theorems imply that, within this language framework, there is a decision procedure to find
out if a real functionality realizes an ideal functionality, and this procedure is in computa-
tional time independent of m (which is essentially the security parameter).

10.4.1 Pseudo-Linear Functions

Before we define pseudo-linear functions, we mention that pseudo-linear functions originate
as functions computed by if-then-else or branching programs involving data objects from
the additive group of fields of characteristic two. The conditionals are built from equality
constraints of linear expressions, and closed under negation and conjunction.

So, consider a finite field F,, where ¢ = 2™. Then m-bit (bit-wise) exclusive-OR just
corresponds to addition in this field. Further, an equality constraint of the form [;(Z) =
l5(7) can then be written as 1 + (I;(Z) + Ilo(Z))?" which evaluates to 1 if [;(Z¥) = Iy(Z),
and evaluates to zero otherwise. Similarly, [;(Z) = 0 and lo(¥) = 0 can be written as
(1+1,(2)7Y) - (1 + 1o(2)971) As a final example, an expression “if (I;(Z) = 0 and I5(Z) = 0)
then I3(Z) else 14(Z)” can be written as (1 + 11 (Z)77) - (14 1o(F)77Y) - (I3(2) + 14(T)) + 14(T)

A pseudo-linear multivariate polynomial defined over sub-field F; is then a polynomial
which is a sum of guarded linear-terms [Dij75]; a guarded linear-term is a polynomial which
is the product of a linear (over F3) polynomial and zero or more linear-guards; a linear-guard
is a linear (over F3) polynomial raised to the power ¢-1. Since, in this section we will only
be dealing with pseudo-linear polynomials defined over F3, from now on we will implicitly
assume that. A pseudo-linear polynomial in n variables and defined over F,, however does
yield a function from (F,)" to F,, which we call a pseudo-linear function. Thus, even
though the polynomial is defined over F5, the underlying field will be F,, and hence the
algebra of the polynomials is modulo (z! = x;) (for i ranging from 1 to n). In formal terms,
the objects in consideration are in Fzy, ..., x,]/ (2] 4+ z1, ..., 2% 4+ x,,)). They are also further
restricted by the fact that all expressions in the guards are linear instead of affine, but we
will later see how to introduce constant additive terms from F, (Section 10.4.2.3).

We observe that pseudo-linear polynomials are closed under pseudo-linear transforma-
tions, i.e. given a pseudo-linear polynomial, raising it to the power ¢-1, and multiplying it by
another pseudo-linear polynomial yields just another pseudo-linear polynomial. This follows
(by induction) from the observation that

(@) 0(@) + f(2)7 = A@T (L@ + L@0))"T + 1+ A@T) - L@ (2)
where f; and f, are arbitrary pseudo-linear functions. The observation itself follows by
considering the two cases where f;(Z) is zero or not.

Approved for Public Release; Distribution Unlimited.
126

More importantly, the if-then-else programs mentioned above compute exactly the pseudo-
linear functions. A more detailed description of such programs and how they relate to
pseudo-linear functions can be found in Section 10.5.

Above, we saw how a multivariate polynomial p(¥) yields a function from F7 to F,.
More generally, if we are given n polynomials f;(Z) to f,(2) (where Z are k formal variables),
then p(f1(2), ..., fo(2)) yields a function from F} to F,, which we say is a pseudo-linear
function of fi, ..., f,.

While for linear multivariate functions a completeness theorem which states that if a linear
function f of n variables is a function of & other linear functions (in the same n variables),
then f must be a linear function of the k linear functions, is well known and rather easy to
prove, a similar completeness result for pseudo-linear functions is novel and not so easy to
prove.

Thus, one of the main result of this section is a theorem which states that if a pseudo-
linear multivariate function f of n variables is a function of k pseudo-linear functions
fi, fi, s fr (in the same n variables), then f must be a pseudo-linear function of fi, fa, ..., fx-
Note that it is given that f itself is a pseudo-linear function in the original n variables.

The primitives in this algebraic structure are motivated by cryptography, in particular
the representation of security properties and cryptographic protocols in the the Universally
Composable (UC) framework. The core technique involved in the UC framework is to prove
equivalence of the system in consideration - the real protocol - and an ideal functionality
which naturally captures the security requirements. The proof is by demonstrating a simula-
tor which has access to the ideal functionality and is able to produce results indistinguishable
from an execution of the target function.

To model the fact that a simulator can iteratively compose various calls to the different
functions in the ideal functionality, we prove a more general theorem involving arbitrary
iterations of k functions f1(Z,9), f2(2,9), ..., fe(Z, ¥), where ¢ are arguments which the sim-
ulator can supply. We then prove that if some f is a pseudo-linear function of 2, and can be
computed by a sub-exponential (in m) length iterated composition of the given k functions,
then it can be computed by a probabilistic iterated pseudo-linear composition of the given k
functions, i.e. fi, fa, ..., f&-

Proceeding further, we include random number generation as an additional primitive and
extend the decision procedure to find if a probabilistic poly time simulator exists for the given
set of randomized ideal functionalities and randomized target function.

For cryptographic applications, this means that an algorithmic search for a simulator in
proving that a protocol in this language realizes an ideal functionality (also in this language)
is independent of the security parameter, as the security parameter is usually related to
the field size. Since the program sizes in cryptographic protocols are usually small, this
can lead to efficient theorem proving. There are additional issues involved, e.g. the real
protocol may be given in a hybrid model [Can|, and the adversary may make iterative
calls to the hybrid functionalities. We do not deal with computational assumptions in this
section, and we expect that the hybrid functionalities themselves embody such assumptions
(see e.g. [CG10]). We discuss how our work is motivated by the UC framework and give

Approved for Public Release; Distribution Unlimited.
127

an example in Section 10.5.2. Although, there have been many pieces of work in formal
methods for cryptographic protocols [AR00, CH, MW04, DDMRO7b], this to the best of our
knowledge is a novel approach to theorem proving of security protocols.

There is a technical restriction of a sub-exponential length iterated composition which
is required to rule out deterministic brute force searches, which a computationally bounded
simulator is not allowed anyway. Finally, we remark that our completeness results require
sufficiently large fields (as a function of the number of variables in f), but given that most
UC proofs only seek proofs of simulatability which do not depend on the security parameters,
our completeness theorem covers all such UC proofs.

The difficulty in proving the completeness theorem stems from the fact that pseudo-
linear polynomials can have individual degrees (i.e. of individual variables) exceeding ¢-1,
and hence it may be subject to reduction modulo x? = z. Similar problems occur in local
testing of low degree polynomials [JPRZ04, KR04], and we would like to point out that
pseudo-linear functions are intimately related to Generalized Reed-Muller Codes [KLPG6S].
Thus, for example it is not immediately clear what constitutes a basis for pseudo-linear
polynomials. We first show a basis for pseudo-linear polynomials, and then show a necessary
and sufficient condition involving the basis for a pseudo-linear function of # to be a pseudo-
linear function of other pseudo-linear functions of 7. A detailed example illustrating these
issues and the proof idea can be found in Section 10.4.1.1. We would also like to mention
that the class of pseudo-linear functions do not form an ideal in F,[Z], and hence the vast
field of Grébner basis is not applicable.

We remark that our theorem does not yet address stateful functions. Many important
functionalities, e.g Random Oracle, Public Key Encryption etc. require stateful functionali-
ties [Can]. Moreover, these functionalities require arbitrarily large tables of state, although
the entries in the table are of fixed size (i.e. depend only on m). This is important to note,
as we show that with arbitrarily large sized entries in tables, the question of simulatabil-
ity is undecidable (see Section 10.6). However, we expect our positive results to extend to
stateful functionalities, and also to functionalities with tables with limited capabilities, e.g.
fixed sized entries. We also expect our results to extend to other groups and cryptographic
constructs with appropriate axiomatization.

10.4.1.1 Example of Pseudo-Linear Functions We will consider some simple exam-
ples to get a flavor of the problem. Suppose we are given two input functions f; and fo
defined as follows:

fi(z1, 22) = 21 + 23 (3)
. 0 if T = 0 or To = 0 g1 g—1
Fal1,72) = { x1 4+ 1o otherwise } =Ty XA Ty (4)

We ask if it is possible to extract just x; given fi(x1,z5) and fo(xy, x9). That is, can we
express f(z1,x2) = x1, in terms of f; and fy alone? To do so, we construct the following

Approved for Public Release; Distribution Unlimited.
128

truth table:

T T 1+ T J1 J2 /
Row 1 0 0 0 0 0 0
Row 2 T 0 T 0 1 T
Row 3 0 To Ty 0 Ty 0
Row 4 Ty Ty 0 0 0 T
Row 5 T To T1 + T T1 + T T1 + T 1

In the table above we list all linear combinations of the atoms, in this case just zi, 2
and x; + x9. Each row corresponds to different combinations of cases where each linear
combination can be zero or non-zero. Any non-zero entry under a column means that the
particular linear combination is non-zero. Simplifications are performed when some of the
linear expressions are zero - e.g. Row 4, where we write x; under the column x, since
r1 + 29 = 0 = x5 = x1. It turns out that any pseudo-linear expression projects to a linear
expression in any particular row - thus each such function can be given by a column of linear
expressions, e.g. fi, fo and f above. In this particular table for fi, fo and f we can come
up with several evidences that f is not a function of fi, fo. Consider Row 4: both f; and f,
are 0, whereas f is x1. Therefore, in accordance with the structure of the row, if we vary z1,
keeping it non-zero and x5 = x1, we get two pairs (z/, ') and (2", 2”) with 2’ # 2" such that
i@, 2') = fi(@",2") = 0 and fo(2', ") = fo(2",2") =0, but f(2',2") =2’ # 2" = f(a", 2").
Hence f cannot be a function of fi, fo. We can construct a counterexample using Row 5
as well: vary x; keeping x; + x5 constant and keeping xy, xs, x1 + 22 all non-zero - e.g. in
GF(23) : (2}, 24) = (001,010) and (7, «%) = (101,110). The common evidence in both rows
is that f is not a linear combination of fi, fs.

However, this is not the only type of evidence. Consider the following f'(z1, x2):

/ . T if T = 0 . q—1
Flay,z) = { 0 otherwise } =1+) (5)
Now the table looks like:

T T Ty + T fi f2 f
Row 1 0 0 0 0 0 0
Row 2 T 0 T 0 T 1
Row 3 0 To Ty 0 Ty 0
Row 4 1 1 0 0 0 0
Row 5 T1 To T1 + X9 T1 + T T1 + T

Approved for Public Release; Distribution Unlimited.
129

Now in each row, f’ is a linear combination of fi, fo (including the O-combination).
However, there is a problem with Rows 2 and 3. The problem surfaces when we try to write
f" as a combination of fi, fo:

x1 T Ty + T J1 J2 f
Row 1 0 0 0 0 0
Row 2 1 0 1 0 fo (= z1) fo (= z1)
Row 3 0 T T 0 fo (= x2) 0
Row 4 1 T 0 0 0 0
Row 5 T T 1+ X9 fi1 (=x1 + x9) fi (=x1 + x9) 0

The following pairs can be seen to be counter-examples in GF(22): (), 25) = (01,00) and
(], 25) = (00,01). For these pairs we have: fi(z),2}) =00 = fi(af,27), fo(a),2y) =01 =
fa(a, xh), but f'(2],x5) = 01 # 00 = f'(z, 2%). This counter-example has been generated
by looking at Rows 2 and 3: one of the technical challenges we solve is to systematically
come up with counter-examples when arbitrary number of atoms and functions are involved.

Finally, consider the function f”:

f,/(xly 1'2) -

if T = 0
ifzy=0and 2y #0 p = (1+22 2y + (1427 Nay (6)
otherwise

Now the table looks like:

T T2 T+ T fi f2 f"

Row 1 0 0 0 0 0 0

Row 2) 0 1 0 gl 1

Row 3 0 T X 0 T2 T2

Row 4 T1 T1 0 0 0
Row 5 T T9 T1 + To r1 + X9 T + To 0
Writing f” as a combination of fi, fa:

1 T T+ 22 fi Jo f’
Row 1 0 0 0 0 0 0
Row 2 T 0 T 0 (: 1’1) f2 (: 1’1)
Row 3 0 T T 0 fo (= x9) fo (= x2)
Row 4 1 1 0 0 0 0
Row 5 T 9 T+ o fi (=21 + x29) f1 (= a1 + x9) 0

Approved for Public Release; Distribution Unlimited.

130

When we “collapse” the table to just the functions we have:

fi f2 fi+ fo I’
Row 1 0 0 0 0
Row 2 0 fo fa fa
Row 3 fi fi 0 0

Now we claim that f” is a function of f; and f; alone. In fact this can be verified easily:

"= f+fa (7)

In this particular case we observe that f” is pseudo-linear in fi, fo. We actually prove
the general result that if the target function is a function of the input functions, then it is a
pseudo-linear function of the input functions.

10.4.1.2 A Basis for Pseudo-Linear Functions In this section we fix a field F, of
size ¢ = 2™.

Let D stand for all linear expressions (including zero) in n variables, say x1, zs, ..., z, (the
unordered collection will be referred to as X). We define the set of elementary pseudo-
linear (EPSELIN) polynomials to be all polynomials of the form

[[a+u@h - TT u®*" - p@ (8)

leJ 1eD\J

where p(Z) is in D, and J is any subset of D such that it is closed under addition, i.e. J is a
subspace of D. We also include the zero polynomial amongst the elementary pseudo-linear
polynomials. Note that if D\J included a linearly-dependent term of J, then the above
polynomial reduces to zero in F.

Generalizing (and specializing) the earlier definition of a guard, we will refer to expressions

of the form
[Ta+uw@ey - I i@ (9)

leJ leD\J

as guards.

For the next definition, we will require that the n variables be ordered by their indices.
Thus z7 is considered to be of lesser index then x5, and so on. This also induces a lexico-
graphic ordering on all equal-sized subsets of the n variables X.

An elementary pseudo-linear polynomial with the above notation will be called a reduced
elementary pseudo-linear (REPSELIN) polynomial if it satisfies the following:

1. Let r be the rank of J (r < min(n, |.J])).

Approved for Public Release; Distribution Unlimited.
131

2. Let R be the lexicographically greatest set of r variables occuring in J which can be
expressed in terms of smaller indexed variables (or just zero) when J is set to zero.
This for example, can be accomplished by considering a row-echelon normal form of J.

3. None of the variables in R occur in p(Z).

To justify this definition, we note that if an elementary pseudo-linear polynomial is not
reduced, then it is equivalent to a reduced one.

One implication of the above definition is that if p(Z) is non-zero then it itself cannot be
in J. Recall, J is closed under addition, by definition of EPSELIN-polynomials. Let r be the
rank of J. Let J be the r sized subset of J which forms a basis of J, and which define the
variables R by the row-echelon normal form of J. Thus, all I(Z) in J must have at least one
variable from R. Thus, p(Z) cannot be in J.

Finally, we define a REPSELIN-polynomial to be a basic pseudo-linear polynomial if the
linear term p(Z) is just a variable from X. Note that since the basic polynomial is REPSELIN,
from item (3) above it follows that this variable is not from R.

Next we argue that any pseudo-linear polynomial can be expressed as a (xor-) sum of
basic pseudo-linear polynomials. For this, we just need to show that any pseudo-linear
polynomial of the form

[T i@ - @ (10)

where J is a subset of D, can be expressed as sum of EPSELIN-polynomials. This follows
easily by induction on the size of J, and by noting that pseudo-linear polynomials with

guards
IT @t - [Ja+u@)h (11)

leD\J leJ

such that D\J includes a linearly dependent expression of J are identically zero.

We will now show that the basic pseudo-linear polynomials actually form a basis for
pseudo-linear polynomials. Before that we need some more notation.

Let Q(X) be the set of all basic pseudo-linear polynomials in variables X. Further, let
G(X) be the set of all guards amongst these polynomials Q(X). Let |G(X)| = ¢. The guards
can then be named w.l.o.g. g1, g2, ...,q;. Recall, for each guard g;, there is associated a
subset of variables X, namely R, that do not occur in any linear terms p(Z). We refer to all
linear combinations of X\ R as P;(X), including the linear term zero. Let |P;(X)| = s; + 1.
(Note, (s; + 1) is two to the power size of the subset of variables associated with ¢;.) The
linear terms in P;(X) can be named p!(Z), j ranging from 0 to s; (not to be confused with
exponent). W.lLo.g., zero will always be p?(Z).

Thus, any pseudo-linear function ¢(Z) can be represented as a sum (over F3) of polyno-

mials from Q(X), i.e.,
= > 0@ -] (@) (12)

€T

Approved for Public Release; Distribution Unlimited.
132

where 7' is a subset of [1..t], and each p! (@) () € P;(X). In fact, we do not even need to take
a subset T' of [1..t]; all zero terms just imply that j(¢,i) = 0, by our notation above that
p?(F) is always taken to be zero. Thus the above representation of ¢(7) is totally defined by
the map j(o,).

While we state and prove the following theorem only for large fields, as only for such fields
are the basic pseudo-linear polynomials a basis, a slightly more complicated characterization
can be given for smaller fields.

Lemma 20 (Basis) For Fields of size ¢ > 2", the basic pseudo-linear polynomials in n
variables form a basis for pseudo-linear polynomials in n variables.

Proof:

We have already shown above that any pseudo-linear polynomial can be represented as
a sum of basic pseudo-linear polynomials, in fact defined by the map j(¢,-) above. So, here
we focus on showing that any pseudo-linear function ¢(%) has a unique such representation.

So, for the sake of contradiction, suppose the everywhere zero function 0 has a non-zero
representation, and let that be represented by the map j(0,7). Now consider any i where
4(0,7) # 0, and lets call pg(o’i)(f) by just p(x) (£ 0). In other words, this representation of
0 has the term

g; - p()
Let,

g= 1] @ - [Ja+uz*" (13)

leD\J leJ

for some subspace J C D. Let the rank of J be r. Let R be the lexicographically greatest
set of r variables occuring in J which can be expressed in terms of smaller indexed variables
when J is set to zero. Recall, by definition, none of the variables in R occur in p(Z).
Claim: With the set of equations J set to zero, we can solve for all linear expressions in D\.J
to be non-zero, and hence also set p(Z) to non-zero.

This would first of all imply that all guards other than ¢;(Z) evaluate to zero: if the guard
9a(Z) is given by subset J, C D (J, # J), then if J\.J, is non-empty, we get that D\.J, has
an [(Z) from J which makes [(2)?"" zero, and if J,\J is non-empty, we get that J, has an
1(Z) from D\J which makes (1 + {(Z)?"!) zero.

Further, the guard g;(Z) will be non-zero, and hence g;(Z)p(Z) would be non-zero, and
consequently the given representation j(0,i) leads to a non-zero function, a contradiction,
which would prove the lemma.

Now, to prove the above claim, recall that J is closed under addition, and p(Z) is in
D\J. Let r be the rank of J. Consider a basis J of a complementary subspace of J.
If our underlying field is of size at least 2”7, we can set .J to zero, and each [;(%) of .J
(1 € [1.n —r]) to e;, where the ¢; (i € [1..n —r|) are linearly independent over F,. Thus, all
linear expressions in D\.J evaluate to non-zero values, as any [in D\J is a non-trivial linear
combination of J plus an !’ from .J. U

Approved for Public Release; Distribution Unlimited.
133

Note on small fields. In smaller fields some of the basic pseudo-linear polynomials, which
are non-trivial functions in large fields, turn out to be identically zero. Thus the basis is
smaller, but more complicated to characterize.

Lemma 21 (Homomorphism) For any pseudo-linear functions ¢1(Z) and ¢o(Z), and for

alli € [1..¢],
J(p1+p2,i) | G(P1,9) T J(¢>2,) (14)

pz - p
Proof: Follows from the fact that the basic pseudo-linear polynomials form a basis for
pseudo-linear polynomials. 0

10.4.1.3 Interpolation Property for Pseudo-Linear Functions Before we prove the
main theorem, we need a few more definitions and related lemmas.

Let f1, fa, ..., fx be k pseudo-linear functions in n variables X, over a field F, (¢ = 2™).
Collectively, we will refer to these polynomials as F'.

For any pseudo-linear polynomial f(Z) in X, let its representation in terms of the basis
be given by j(f,-). Since each of the polynomials from F, ie. fi(Z), fa(Z),...., fr(Z) is
pseudo-linear, it be represented by j(fs,-) (s € [1..k]). Further, each linear combination of
F'is represented similarly.

We say that two guards g, (%) and g,(7) are F-equivalent if for every linear combination
¢ of functions from F, it is the case that j(¢,a) = 0 iff j(¢,b) = 0. In this case, we write
a =p b, which is an equivalence relation.

Lemma 22 Ifa and b are F-equivalent then if for some subset S C [1..k], the linear com-

bination Y g Pa AL identically zero , then so is Zsesp{)(fs’).

The lemma follows by Lemma (21). Thus, if £’ is the rank of p §(Fe:2) (s € [1..k]), then it

is also the rank of p] =P 1n fact, we can take the exact same k' indices from (s € [1..k]),

w.lo.g. [1..K], to represent the basis for the k linear expressions, for both a and b.

Let D(F) denote the set of all linear combinations of functions in F'.

For any function f(Z), and any set F' of pseudo-linear functions in X, we say that f(Z)
has the F-interpolatable property if it satisfies the following two conditions:

(i) Vi€ [1.4]: 3p, € D(F) : j(f.i) = j(és,i) , and

(ii) For every a,b € [1..t] such that a and b are F-equivalent, w.l.o.g. by Lemma (22), let

(fS7) (.](fsv))

the first &’ functions out of (k functions) pi out of D , represent their basis

(resp. for b). Then, if the ¢, in (i) is given by 3 c?pa?*™ and 3° cgpi b pespectively
for a and b, then for all s € [1..k'], ¢* = .

Lemma 23 If f is a pseudo-linear function in X, and f satisfies the F'-interpolatable prop-
erty, for some set F' of pseudo-linear polynomials in X, then f is a pseudo-linear function
of I

Approved for Public Release; Distribution Unlimited.
134

Proof: Indeed, consider T = [1..t] / =p, where ¢ is the number of guards, e |G(X).
We pick the smallest elements from [1..] to represent each equivalence class in 7. Define a
function h(Z) to be the following:

=Y II @ - I A+e@) - bu(@ (15)

uweT ¢€D(F):5(¢p,u)#0 HED(F):5(d,u)=0

where for each u, ¢, is some function ¢, satisfying the F-interpolatable property (i) above.

Now by definition, h(Z) is pseudo-linear in F. We now show that h=f, i.e. for all
7 e (F)", hZ) = f(Z). Fix any 2* in (F,)". Let J C D, such that all linear functions in .J
evaluate to zero at z*, and all linear functions in D\ J evaluate to non-zero quantities at z*.
Clearly, J is closed under addition, and hence J corresponds to a guard g;. In other words,
g:i(#*) = 1, and for all other ¢ € [1..t]: go(#) = 0. Thus, f(&*) = p/"?(#*), and similarly,
for all ¢ € D(F), ¢(7*) = pf(‘z”i) (2*). By definition of i (i.e. g; corresponding to J above,
and hence pg(¢’i) € D\J), it follows that ¢(Z*) is zero iff j(¢,i) =

Now, in equation (15), we show that the only u for which the “guards” evaluate to be
non-zero (i.e. one), is the one corresponding to the equivalence class of 7 in T' (say, ;). In
fact, for i (and its F-equivalent u;) the “guards” indeed evaluate to 1. For all other ¢', if the
“guards” evaluate to one, then by definition of F-equivalence, those i’ are F-equivalent to i.

Thus, h(Z*) = ¢y, ("), and since ¢,,, is pseudo-linear in X,

0u() =) = e = Rl @) =p @) a0)

s

Thus, k(7)) = p)") (&), which is same as f(Z*). O

10.4.1.4 The Completeness Theorem for Pseudo-Linear Functions While the
main completeness theorem below is stated and proven for only large finite fields, it holds
for all finite fields of characteristic two.

Theorem 7 Let fi, fo, ..., fr be k pseudo-linear functions in n variables X, over a field F,
(q = 2™), such that ¢ > 2". Collectively, we will refer to these polynomials as F. Let [be
another pseudo-linear function in X. Then, if f is a function of F', then f is a pseudo-linear
function of F.

Proof: We show that if f is not a pseudo-linear function of F', which by Lemma (23) means
that it does not satisfy at least one of F-interpolatable properties (i) or (ii), then f is not a
function of F.

Since f(Z) is a pseudo-linear polynomial in X, let its representation in terms of the basis
be given by j(f,-). Since each of the polynomials from Fie. fi(2), fo(Z),...., fx(Z) is pseudo-
linear, it can also be represented by j(fs,-) (s € [1..k]). Further, each linear combination of
F'is represented similarly.

Approved for Public Release; Distribution Unlimited.
135

So, first consider the case where f does not satisfy (i). In other words, for some i €
[1..t], for no linear combination ¢ of F' (including zero) is j(f,4) equal to j(¢,7). Thus, by

Lemma (21), pg(f) is linearly independent of all pg(f) (s € [1..k]). Let J € D correspond

to the guard g;. Thus, pg(f D and all pg(f =) (for s € [1..k]) are linearly independent of J.
Let r be the rank of J, and k' < k be the rank of p{ (fo:t) collectively. Since pg () g linearly
independent of all pf (“"’i), we have that r + &' +1 < n. Now, the subspace corresponding to
J set to zero has dimension n — 7, and hence has ¢"~" points. However, we are interested in
points where all expressions in D\ J evaluate to non-zero values, which would guarantee that
g; = 1, and all other guards are zero. Recall the subspace P;(X) generated by all variables
not in the set R corresponding to guard g;. Now, D\J is a union of cosets of (n — r)
dimensional space P;(X) shifted by subspace J. Consider a basis B for P;(X), comprising of
pg(f’i), a k'-ranked basis of pg(f“”i)
5.

Assume the field F, is of size at least 2!, and hence has n + 1 linearly independent
(over F3) elements e;. Thus, for every injective map setting B to these e;, there is a distinct
solution to J being zero, and all of D\J evaluating to non-zero values. Thus, there are at
least ("*!)(n —r)! such points in (F,)".

n—r
fs5)

,and n —r — 1 — k' other linearly independent expressions

So, we fix pf(to es (s € [1..K']; assume w.l.o.g. that the first &’ formed the basis), and
similarly fix the B’ expressions to €41 to €,_,_1. This still leaves at least (n+1—(n—r—1))
choices for p/) Thus, we have the situation that there are two points in (F,)" where f
evaluates to different values, whereas F' has the same value, and hence f cannot be a function
of F.

Now, consider the case where f does satisfy condition (i), but condition (ii) is violated.
In other words, for each ¢ € [1..¢], pg(f %) is same as some pg(d)*’i), but there exist a and b
in [1..t] which are F-equivalent, but the ¢,’s linear representation coefficients ¢, differ for a
and b. Again, we will demonstrate two points where F' evaluate to the same value, but f
evaluates to different values.

Again, let’s assume that the underlying field is large enough to have at least k' linearly
independent (over F3) elements, say e;.

Now we have two sets, J, corresponding to guard g,, and Jp, corresponding to guard g.
However, there is an easy solution for setting .J, to zero, and setting pi(f ») (s € [1..K]) to
es. Similarly, there is a solution for setting .J, to zero and setting pﬁ(f ») (s € [1..K]) to es.
Thus, in both cases all f; (s € [1..k]) evaluate to the same value, but f being a different
linear combination in the two cases, evaluates to different values. O

10.4.2 TIterated Composition of Pseudo-Linear Functions

In this section, we consider pseudo-linear functions which can take arguments, modeling
oracles which are pseudo-linear functions of secret values and arguments. Thus, for instance
it may be required to find if there exists a simulator which given access to functionalities
which are pseudo-linear functions of secret parameters X and arguments supplied by simu-

Approved for Public Release; Distribution Unlimited.
136

lator /adversary, can compute a given a pseudo-linear function.

This generalizes the problem from the previous sections, where the simulator could not
pass any arguments to the given functions. For simplicity, we will deal here with functions
which only take a single argument, and thus all the functions can be written as f;(Z,y), each
pseudo-linear in ¥ and y.

So, given a collection of k pseudo-linear functions F'(X,y), we now define an iterated
composition of F. Let F, be the underlying field as before. An iterated composition o of
F is a length ¢ sequence of pairs (¢ an arbitrary number), the first component of the s-th
(s € [1..t]) pair of o being a function ¢, from F, and the second component an arbitrary
function 75 of s — 1 arguments (over JF,).

Given an iterated composition o of F', one can associate a function f7 of X with it as
follows by induction. For o of length one, f7 is just ¢1(Z,v1()), recalling that ¢, € F. For
o of length t,

F7(Z) = o, (7 (D), 7P (Z), ..., f711(T))) (17)
where o|; is the prefix of o of length j.

Since, functions in n variables over F, are just polynomials in n variables, there is a
finite bound on ¢, after which no iterated composition of F' can produce a new function of
the n variables. The collection of all functions that can be obtained by iterated composition
of F' will be referred to as terms(F’). If we restrict v, to be pseudo-linear functions of
their s — 1 arguments, we will refer to the iterated composition as pseudo-linear iterated
composition of F', and the corresponding collection of functions associated with such
sequences as pseudo-linear iterated terms or pl-terms(F'). Note that in this case 7, is just
Zero.

Note that an arbitrary program can only compute a function of the terms, whereas an
arbitrary pseudo-linear program can only compute a pseudo-linear function of the pseudo-
linear terms. We would like to show that if a function f of terms(F') is a pseudo-linear
function of X, then it is a pseudo-linear function of pl-terms(F'). However, as we demonstrate
in Section 10.4.2.1, this is not true in general, and a slight extension is required to the pl-
terms, so as to enable probabilistic functions.

10.4.2.1 Example of Iterated Pseudo-Linear functions Consider the input function
fi(x1,y) and the target function f(z;) defined as follows:

r ify=mx

filzr,y) = { 0 otherwise } = (14 (z1 +y)* a1 f(21) = (18)

It is easy to see that the iterated compositions of fi(x1,y) is just the single function 0,
which outputs 0 on any input. However, it is possible to compute f(z1) by calling fi(z1,y)
as the following algorithm demonstrates:

Approved for Public Release; Distribution Unlimited.
137

Algorithm Simulate_f' ()

repeat for all non-zero elements y in Fj

t— fi(z1,9)
if (t=y)

return ¢
Yy <— next y
end repeat block

return 0

In this example, we observe that the complexity of the algorithm is O(q).
Now consider the following input and target functions:

, 0 ify=0o0ry=a21 | _ , -1 , -
filzi,y) = { 2, otherwise =y (1 +) w f (1) = @ (19)

Here also the iterated compositions of f{(xq1,y) is just the single function 0. Also, it
is possible to compute f(z;) (with high probability) by calling f(z1,y) as the following
algorithm demonstrates:

Algorithm Simulate_f1 ()

choose y randomly from F,

b fl(xluy)
return t

In this example, we observe that the complexity of the algorithm is O(1), but it works
with probability 1 — O(1/q): the probability of y being different from 0 and z;. For this
particular example, it is also possible to come up with an efficient deterministic algorithm -
but systematically coming up with efficient deterministic algorithms in all cases where it’s
possible, seems to be a hard problem. We do show how to systematically come up with
randomized efficient algorithms in all the cases where it is possible to do so.

10.4.2.2 Theorem for Iterated Pseudo-Linear Functions An iterated composition
will be called an extended pseudo-linear iterated composition of [if v, is either a
pseudo-linear function or a constant function ¢(Z) evaluating to an element ¢ in F,. For
each such ¢, the corresponding collection of functions associated with such sequences will be
called extended-pl-terms(F, c).

We will also need to refine the definition of terms(F'), by restricting to terms obtained
within some T iterated compositions, for some positive integer 7. Thus, termsy(F') will

Approved for Public Release; Distribution Unlimited.
138

stand for the collection of functions obtained by iterated compositions of I’ of length less
than T'. In particular we will be interested in 1" which is bounded by polynomials in log ¢
and/or n, the number of variables in X.

Theorem 8 (Main) Let f1, fa, ..., [r be k pseudo-linear functions in n variables X and an
additional variable y, over a field F, such that ¢ > 2*". Collectively, we will refer to these
polynomials as F'(X,y). Let T' be a positive integer less than 2"(< \/q). Let f be another
pseudo-linear function in X. Then, if f is a function of termsy(F(X,y)), then f can
be defined as a pseudo-linear probabilistic function of extended-pl-terms(F (X, y), Seed),
where the probability is over Seed chosen uniformly from F,, and for each ¥ the probability
of this definition of f being correct is at least 1 —1/,/3.

Similar to Section 10.4.1.3, we first state an interpolatable property which is a sufficient
condition for a pseudo-linear function of X to be a pseudo-linear function of pl-terms(F').

Recall the functions in F' now have an additional argument y. As before, D(G), for
any set of functions G will denote the set of all linear combinations (over F;) of functions
from G. Below we define the class Z*(F) of pseudo-linear functions in X, for ¢ an arbitrary
natural number. In fact, since the inductive definition will sometimes use functions in both
X and y, we will just define this class as pseudo-linear functions in X and y, though for
different y, they would evaluate to the same value. In other words, for an arbitrary guard
9a(Z), which corresponds to a subset J C D(X) (J is closed under addition), there are many
super-guards when viewed as a function of X and y, namely with subsets J' C D(X,y)
(J' closed under addition) such that J C J" and (D(X)\J) C (D(X,y)\J'). Thus, for
all these super-guards, a pseudo-linear function ¢(X) will have the same j(¢,-) value (see
Section 10.4.1.2).

However, and more importantly, with y set to some linear expression [(Z) € P,(X)
(including zero), ezactly one of these (super-)guards has the property that Jj . = J (Note
the subscript y|/(Z) means [(Z) is substituted for every occurrence of y in J'). This particular
J' is given by

J' = D(J {y +1(Z)}) (20)

In this case we say that this super-guard of g, is consistent with y+1(Z) = 0. The super-guard
corresponding to J' = J will be called the degenerate super-guard of g,(7).

Now we define the pseudo-linear function which is the composition of f; and h, i.e. fsoh,
where f, is a pseudo-linear function in X and y, and h is a pseudo-linear function in X, by
defining its components in the basis for pseudo-linear functions. For any guard ¢;(Z) (of func-
tions in X), let g;(Z,y) be the unique (super-) guard, mentioned in the previous paragraph,
which is consistent with y set to pi'(h’i) (note the map j here is for guards corresponding to
X, and in general it will be clear from context whether we are referring to map j for guards
corresponding to X or X, y). Then, define

P @) = o0 @ () (21)

) 174

Approved for Public Release; Distribution Unlimited.
139

Further, for all I’ which are super-guards of 7, we set pjl'gf "I 46 be the same value (as

fs o h is only a function of X). Note that since each p is just a linear function, this implies
that each component of fs o h is a linear function of X (and hence X, y). In particular,
(fs 0 h)(Z) = [fo(Z, h(Z)).

Define Compose(F (X, y), H(X)), where F(X,y) are a set of pseudo-linear functions in
X,y and H(X) is a set of pseudo-linear functions in X, to be the set of all functions f; o h,
where f; € FI(X,y) and h € H(X).

For each pseudo-linear function f, of X and y, we also need to define a pseudo-linear
function (in X) called degenerate(f;), which for each guard ¢, (Z), defines the corresponding
p function using its degenerate super-guard. Thus,

pitdegenerate(s.a) z) — 10Dz), (22)

where [is the degenerate super-guard of g,.
Now, we are ready to define the iterated pseudo-linear functions. Define

T°(F) = D(Compose(F, degenerate(F)))Z""(F) = D(Z'(F)UCompose(F, T'(F))), for i > 0.
(23)

Since, these functions are just polynomials over finite fields (in fact defined over F;), the
above iteration reaches a fix-point at an ¢ bounded by a function only of n. We will denote
the fix-point by just Z(F).

Now, we generalize the definitions of F-equivalence and F-interpolatable from Sec-
tion 10.4.1.3. Two guards g,(%) and g,(Z) are said to be F*-equivalent if for every ¢(Z)
in Z(F), it is the case that j(¢,a) = 0 iff j(¢p,b) = 0.

The definition of F™*-interpolatable property is same as the F-interpolatable property
except that D(F') is replaced by Z(F).

Instead of the closure Z(F'), it will also be useful to define the following set of functions

C= U Compose(F,T'(F)) U Compose(F, degenerate(F)), (24)

and it is easy to see that Z(F') is just the linear closure of C.

Lemma 24 If f is a pseudo-linear function of n variables X over a field F,, and f satisfies
the F™*-interpolatable property, for some set ' of pseudo-linear polynomaials in X,y, then f
can be defined as a pseudo-linear probabilistic function of extended-pl-terms(F (X, y), Seed),
where the probability is over Seed chosen uniformly from F,, and for each I the probability
of this definition of f being correct is at least 1 — 2" /q.

Proof: The proof is similar to the proof of Lemma 23, but there is a small difference due
to the probabilistic nature of this lemma.

Consider 7' = [1..] / =p, where ¢ is the number of guards, i.e. |G(X)|. We pick the
smallest element from [1..t] to represent each equivalence class in 7. Define a function h(7)

Approved for Public Release; Distribution Unlimited.
140

to be the following:

@ =Y I @ [T +e@) - ¢u@ (25)

ueT PED(F):j(d,u)70 €D (F):5(¢,u)=0

where for each u, ¢, is some function ¢, € C satisfying the F*-interpolatable property (i).
Now by definition, h(Z) is pseudo-linear in C. Now, the proof that h=f, i.e. for all ¥ €
(F)", h(Z) = f(Z), is identical to the proof in Lemma 23. However, h is pseudo-linear only on
C, whereas we need to show a function pseudo-linear in extended-pl-terms(F' (X, y), Seed).
Observe that for any f,, exactly one of the following cases hold, for all y linearly inde-
pendent of

Case 1: f4(Z,y) = degenerate(fs)(T)
Case 2: f4(Z,y) = degenerate(fs)(Z) +y

Now define a function h(Z, ¢) to be same as h, except every occurrence of degenerate(f,)(7)
is replaced by either of the following:

{fs(:i, c) %n Case 1 (26)
fs(Z,¢)+ ¢ in Case 2

(recall, fs is a function of X and y, whereas degenerate(f;) is a function of only X). Then,
it is easy to see that ﬁ(f, ¢) is in extended-pl-terms(F) c¢). We next show that for every &,
with ¢ chosen uniformly from F,, probability that h(Z,¢) = h(Z) is at least 1 — 2"/q. For
each 7, one and only one guard g, is satisfied. the probability that for this guard, ¢ = I(¥),
for some [(Z) € Ps(X) is at most 1/¢q. Hence, by union bound, over all possible [(Z), the
probability that ¢ equals any [(Z) is at most 2" /q, as | X| = n. These are the only cases in
which degenerate(f,)(Z) may differ from f,(Z, c) or f4(Z,c) + ¢, as the case may be. O
Proof:[of Theorem §]

For the sake of leading to a contradiction, suppose that f is not a pseudo-linear prob-
abilistic function of extended-pl-terms(F'(X,y), Seed). Then by Lemma 24, f does not
satisfy the F™*-interpolatable property. Hence, as in Theorem 7, we have two cases. Before
we go into the analysis of the two cases, we recall a few relevant definitions, and state some
useful properties.

Recall from Section 10.4.1.2, that Q(X) is the set of all basic pseudo-linear polynomials
in variables X, and, G(X) is the set of all guards amongst these polynomials Q(X). Fur-
ther, |G(X)| = t. Also, recall for each guard g; its corresponding set R from its REPSELIN
representation, and the corresponding subspace Ps(X).

Also, recall the super-guards g¢;(Z,y) corresponding to guards g;(Z). Thus, if J corre-
sponded to g;, then some J' such that J C J' C D(X,y), corresponds to super-guard g;.
Further, (D(X)\J) C (D(X,y)\J’). Hence, if some y + [(Z) is in J', we can w.l.o.g take
as the corresponding R’ (of g;) to be R U {y}. Thus, in such cases p;(Z,y) are just linear

Approved for Public Release; Distribution Unlimited.
141

expressions in X\ R. If on the other hand, for no [(Z) it is the case that y + [(Z) is in J',
then R' = R, and p;(Z,y) will be a linear expression in (X\R) U {y}.

Now we are ready to analyze the two cases.

Case 1: First, consider the case where f does not satisfy property (1) of F*-interpolatable.

Then, it is the case that there exists an s € [1..t], such that for every linear polynomial
¢ inZ(F), j(f,s) # j(¢,s). Thus, by Lemma 21, p2%*) is linearly independent of all pi**,
with ¢ € C.

Let J C D correspond to the guard g,. Thus, pg(f’s), as well as all pg(¢’8) (¢ € C) are
linearly independent of J (see the paragraph after definition of REPSELIN polynomials). Let
r be the rank of J, and &’ be the rank of pi("“) collectively. Thus, r + k' +1 < n. Consider a
basis B of Py(X) consisting of pg(f ’S), a basis B” of pg((z)’s), and another linearly independent
set B of expressions in X\R (of rank n —r — k' —1).

Our aim is to demonstrate two different settings of X to values in F,, such that f(Z) has
different values, while all of the termsy(F'(X,y)) have the same value at the two settings.
Now, fix a particular length T iterated composition o of F'. We will now show that each of
Y (fO(Z), fOrR(ZD), ..., fO-1(X)), t € [1.T], as well as f71t(Z) is a function of only B”, and is
independent of p;(f ’S), and also independent of B’ defined above. Thus in choosing the two
different settings for X, we can first set the basis B” to some value, which will fix the ~(...)
values, and then we can set the B’ and pg(f) to two different values, while assuring that all
consistency requirements are met.

For the base case, 71() is clearly not a function of pg(f ’S), or B'. Now, for the induction
step, consider f71=1(Z). which is given by ¢y_1(Z, v—1(f712(Z), f72(Z), ..., f7-1(Z))). where
¢_1 is in F. Now, by induction the ,_1(...) expression is not a function of p"** or B'.

Now, it is possible that 7,_1(...) is equal to some pg(¢*’5)(f) (¢* € C), in which case
Gi—1(Z,v—1(...)) would just equal p]I'((bt’M) (Z,y), for I corresponding to the unique super-
guard g;(Z,y) which is consistent with y+ p2'**(Z) = 0. But, pf}(d’t’l’n is either pi“"?(Z)
(¢** € C) or such an expression plus y, by definition of C and definition of pf}(f sohD) (Z,y). In
cither case, it is a function of only p2>*(Z) (¢ € C) by induction.

If v,_1(...) is not equal to any pi"* (%) (¢* € C), we will show that we can choose & so
as to assure that 7;_1(...) is not equal to any linear expression in 5’ (and pi ’8))

t <T < 2" <,/q. In this case ¢;_1(7,y,—1(...)) returns p]}((ﬁt’l"r)(f, y), where I corresponds

to the degenerate super-guard of g, given by J' = J. However, such p?wt*hl) (Z,y) is again

either pf;((b**’s)(a_f) (¢** € C) or such an expression plus y, since C includes Compose(F,
degenerate(F)).
Now, we demonstrate the two different settings of X to values in F,. We first choose %’

linearly independent (over F3) values in F, and set the basis B” to these values, so that all

either, as

expressions pg(¢’8) (¢ € C) are non-zero. As explained above, the values 7;(...) are then fixed,
and let this set of values along with zero be collectively called I'. Next, we inductively assign
values to the basis B'(of size n —r — k' — 1) as follows. Let this basis be given by [;(Z),
ly—r——1(Z). For [;(Z), we pick any value in F, which is not equal to any value in D(B")

ceey

Approved for Public Release; Distribution Unlimited.
142

+ I', where the sum of two sets is defined naturally. For, the induction step, we choose for
1;(Z) a value in F, which is not equal to any value in D(B" U {l1(Z), ..., l;_1(Z)}) + T.

Since p!(f,s)(¥) is linearly independent of B” (as well as B'), we choose a value for it

which is not equal to any value in D(B” U {l1(Z), ..., l,—r—p—1(Z)}) + I'. Further we have at
least two choices for it, given that F, > 2 + 2" x (T' 4 1). This also proves our claim
that I' is never equal to any linear expression in B’ U {pg(f ’S)}. Further no linear combination
of B' and B” will be zero. Then, we can choose the R variables corresponding to the guard
gs, which by definition of R are given in terms of the variables already chosen, so that the
guard g, is true in both cases.
Case 2: Now consider the case where condition (i) holds, but condition (ii) of the F™*-
interpolatable property fails to hold for f. In other words, for each i € [1..], pg 9 ig same
as some pg (62:9) ((for ¢, € C), but there exist a and b in [1..t] which are F*-equivalent, but
the ¢,’s linear representation coefficients ¢, differ for ¢ and b. Again, we will demonstrate
two points where termsy(F (X, y)) evaluate to the same value, but f evaluates to different
values.

We have two sets, J, corresponding to guard g,, and J,, corresponding to guard g;. Let
k' < n be the rank of pf;((b’a) (¢ € C). Let r, be the rank of J,, and 7, be the rank of J,. thus,
re + kK <n,and r, + k' < n. Let the R sets corresponding to guards g, and g, be called R,
and Ry, respectively. Let Bl be a basis for X\ R, excluding D(B"), and similarly 5, be a basis
for X'\ Ry excluding D(B"). We set the basis B” of p§(¢’a) to linearly independent over GF2

values e to e. We set the basis of pi(‘z”b) also to the same values, recalling that the two bases,
one for a and the other for b, can be chosen to have the same indices. Thus, all functions in
C will have the same value when guards g, or g, are true. As in case 1, it follows that we
can assure that by choosing B), and B, appropriately, each of v;(f71*(Z), f712(Z), ..., f71t-1(Z)),
t € [1.7], as well as f71¢(Z) is only a function of B”, and hence have the same values when
guards g, or g, are true. However, since f has different linear combinations of B” at these
two guards, it evaluates to different values. Further values for variables in R, and R; can be
chosen so that guards g, and g, are indeed true. O

10.4.2.3 Allowing a Few Constants Let E be a set of linearly independent (over F3)
elements of a field F,. Now, we redefine pseudo-linear polynomials where each linear term is
as before defined over Fj, but can in addition have an addend from E. The same rule also
applies to all the linear terms in the guards. Then, we can prove the following theorem.

Theorem 9 Let fi, fo,..., [r be k pseudo-linear functions in n variables X, over a field F,
(q = 2™), such that ¢ > 2"*1El Collectively, we will refer to these polynomials as F. Let f be
another pseudo-linear function in X. Then, if f is a function of F', then f is a pseudo-linear
function of F.

Proof is similar to that of Theorem 7, in that we treat £ as formal independent variables,

and then in the proof of Theorem 7, we set these formal variables to E where we set the £’

basis elements of p!"*? to e,.

Approved for Public Release; Distribution Unlimited.
143

A similar version holds for the iterated composition Theorem 8.

10.4.3 Randomized Pseudo-Linear Functions

In this section we consider randomized pseudo-linear functions, or distributions over pseudo-
linear families of pseudo-linear functions. A pseudo-linear family of pseudo-linear functions
is given by a pseudo-linear function f’ in variables Z and 7, where the variables i parametrize
the family. Given such a f’, a randomized pseudo-linear function f (in) is given by choosing
7 uniformly and randomly.

The simulation question then becomes whether one can generate the target function
distribution by sampling the input function distributions.

When we regard the 7" as formal variables, we can apply Lemma 20 to deduce that f’ is
expressible in terms of the basic pseudo-linear polynomials in (Z, 7). In particular,

raEn =3 a@n o @En (27)

’ieTn+m

Consider a guard g; in just the space of the input variables Z, with associated set J, i.e.
9i = [Liepy s @) [le, (1 + 1(2)771). Consider the set of super-guards I; which extend
J to D U D(7) and each super-guard I € I; corresponds to a different subspace J. C D(7)
added to the subspace J (and then taking closure). Thus, we get a set of guards g; (I € [;)
corresponding to each guard g;.

From now on, when clear from context, we will refer to the randomized function as f (%,),
to signify the random variables over which the distribution is defined.

We now show that given any randomized pseudo-linear function f(Z,7), there is a ran-
domized pseudo-linear function in just one random variable 7, such that it is statisitically
indistinguishable from f. The new randomized pseudo-linear function f in just one random
variable 7 and the same input variable set ¥, is defined in the following way:

e The function f will only have non-zero p for guards involving only 7, i.e. p for guards
involving 7 will be zero.

e For each guard g; (with associated J), consider its extension super-guard I, € I,
corresponding to J. = {0}, In this case, Jy, is just J. Suppose pjl(()f’IO)(f, 7) = 11(%) +
lo(7). If I3 is not identically 0, then set pz(f’i) (Z) = 7, otherwise set pz(f’i) (Z) = (7).

Lemma 25 Let logq > 2(p + m), where p is the number of random variables and m is the

number of input variables in f. The distribution f(&) is statistically indistinguishable from
f(Z) with advantage < 1/./4.

Proof: Since there are at most 2°™™ different linear expressions in # and 7, by union bound,
with probability at least 1 — 2°*™/q > 1 —1/,/q, all linear expressions l,(Z) + lo(7) are

Approved for Public Release; Distribution Unlimited.
144

non-zero, when [y is not identically 0. In the rest of this proof, we therefore restrict ourselves
to only on this overwhelming case.

Now consider any guard g; in just . For any super-guard index I € I; — I, at least one
component (1 + [(Z,7)97!) in the super-guard will evaluate to 0, where I(Z,7) € J. Hence
the guards corresponding to (I; — Ip) all evaluate to 0.

For the index Iy, no component of .J;, is identically zero since it is composed of 7 only. The
components (I1(Z) + I5(7))?~1, where Iy is not identically zero, evaluate to 1, since these are
non-zero by the earlier restriction. Hence they can be dropped off, and we are just left with
the guard g; over just the @’s. Now, suppose pjl'(f’IO)(f, 7) = 11 (Z) + (7). If Iy is identically

0
zero, then pﬁ(f /To)

(@, 1) is just a function of #. If I is not identically 0, then pjllgf,’l‘))(f,f’)

is just a uniformly distributed random number. We can set p’ (F4) (¥) = 7. These random
numbers 7 do not have to be different for every guard g;, since for any fixed 7, exactly one
of the guards is going to be equal to 1 and the rest of them will be 0. U
We will refer to the functions of the form of f as Simplified Randomized Pseudo-Linear
functions (SRPL). These are functions which can be expressed with guards from Z only and
just one random variable. Lemma 25 indicates that we can just focus on SRPL functions
since any randomized pseudo-linear function is statistically close to an SRPL function.

Lemma 26 (Homomorphism) For any SRPL functions ¢1(Z) and ¢o(Z), and for all i €
[1..1],

pg(¢>1+¢27i) _ pg(¢17i) —l—pf(d)?’i) (28)

with the rule that © + - is re-written as 7.

Proof: Follows from the fact that for a fixed 7, exactly one of the guards evaluates to 1 and
the rest evaluate to 0. Also, adding a uniformly distributed random number to any quantity
yields a uniformly distributed random number.

O

10.4.3.1 Interpolation Property for SRPL Functions Let fi, fo,..., fx be k SRPL
functions in n variables X, over a field F, (¢ = 2™). Collectively, we will refer to these
polynomials as F.

For any SRPL function f(¥) in X, let its representation in terms of the basis be given
by j(f,-). Note that there is also one special index j for the random variable r as well. Let
this index be denoted by j(f,-) = $ uniformly.

Since each of the polynomials from F, ie. fi(Z), fo(Z),...., fu(Z) is SRPL, let it be
represented by j(fs,:) (s € [1..k]). Further, each linear combination of F' is represented
similarly, with the rule that r + - is replaced by r in the sum (see lemma 26).

We say that two guards g, (%) and g,(7) are F-equivalent if for every linear combination
¢ of functions from F, it is the case that j(¢,a) = 0 iff j(¢,b) = 0 and j(¢,a) = $ iff
j(¢,b) = 3. In this case, we write a =g b, which is an equivalence relation.

Approved for Public Release; Distribution Unlimited.
145

Lemma 27 If a and b are F-equivalent then if for some subset S C [1..k], the linear com-
bination Zsespé(fs’a) I also if for some subset
S C [1..k], the linear combination) ¢ pfl(fé 9 is random, then so is Y oses p{,(fs’b).

1s identically zero, then so is Zsespb

The Lemma follows by Lemma (26). Thus, if &’ is the rank of pi/>® (s € [1..k]), then it
is also the rank of pi(fs’b). In fact, we can take the exact same k' indices from (s € [1..k]),
w.l.o.g. [1..K'], to represent the basis for the k linear expressions, for both a and b.

Let D(F) denote the set of all linear combinations of functions in F.

For any function f(Z), and any set F' of pseudo-linear functions in X, we say that f(Z)
has the F-interpolatable property if it satisfies the following two conditions:

() Vie[Ld]:j(f,1) =8V (3o, € D(F) : j(f,1) = j(ds, 7)) , and
(ii) For every a,b € [1..t] such that a and b are F-equivalent,
either j(f,a) = j(f,b) = $, in which case we set j(¢y,1) = $;

or, the following holds: w.l.o.g. by Lemma (27), let the first £’ functions out of (k

functions) pi’>® (out of pi'/*"),

in (i) is given by 3 ¢p) f 29 and Y ¢l | respectively for a and b, then for all

s € [1.K], @ =l

represent their basis (resp. for b). Then, if the ¢,

Lemma 28 Let X € (F,)". If f is an SRPL function in X, and f satisfies the F'-
interpolatable property, for some set I of SRPL functions in X, then there exists a prob-
abilistic poly-time (in lgq) algorithm ST, such that the distribution f(X) is statistically
indistinguishable from the distribution ST(X).

Proof: Indeed, consider T = [1..t] / =, where t is the number of guards, iLe. [G(X)|.
We pick the smallest elements from [1..] to represent each equivalence class in 7. Define a
random variable h(Z) to be the following:

h(E) & ST(2) (29)

where for each u, ¢, is some function ¢, satisfying the F-interpolatable property above and
algorithm ST as follows:

Approved for Public Release; Distribution Unlimited.
146

Algorithm SF(*)
for all we[l...t]/ =p

guardfound := true

for all ¢ € D(F)
% = O@); 1 O(T)
if 79 # 1 then israndom := true else israndom := false

j(p,u) =$ and israndom := true
if or j(¢,u) =0 and o =0 and israndom := false
or j(¢,u)#0 and 9 # 0 and israndom := false
then continue for loop

else guardfound := false; exit for loop

if guardfound = true then result < ¢,(Z); exit for loop
else continue for loop

return result

We now show that h =~ f, i.e. for all ¥ € (F,)", h(¥) ~ f(Z). Fix any &* in (F,)". Let
J C D, such that all linear functions in J evaluate to zero at *, and all linear functions in
D\ J evaluate to non-zero quantities at #*. Clearly, J is closed under addition, and hence .J
corresponds to a guard g;. In other words, g;(#*) = 1, and for all other i’ € [1..t]: g#(Z*) = 0.
Thus, f(7*) = pj(f’i)(_”k), and similarly, for all ¢ € D(), ¢(&*) = pf((b Z)(). By definition
of i (i.e. g; corresponding to J above, and hence p; J(e4) ¢ D\J), it follows that ¢(&*) is zero
iff j(¢,4i) =0, and ¢(&*) is random iff j(¢,7) = $.

Now, in the algorithm S*, we show that the only u for which the “guards” evaluate to be
non-zero (i.e. one), is the one corresponding to the equivalence class of 7 in T' (say, u;). In
fact, for ¢ (and its F-equivalent u;) the “guards” indeed evaluate to 1: the reasoning is same
as in the proof of Lemma 23 for the non-random values; in the random case, when we call
¢() twice, the responses should be different with probability 1 — 1/¢, hence vy # 1 would
evaluate to true - in any non-random case, vy # 7, would evaluate to false with probability
one. For all other 7/, if the “guards” evaluate to one, then by definition of F-equivalence,
those i’ are F-equivalent to .

Thus, h(Z*) ~ ¢, ("), and since ¢,,, is pseudo-linear in X,

6, (@) = p " (@ ~ e) =Y an) =0 (0)
Thus, h(z*) ~ pi(f’)(), which is same as f(Z*). O
10.4.3.2 The Completeness Theorem for SRPL Functions

Approved for Public Release; Distribution Unlimited.
147

Theorem 10 Let fi, fo, ..., fx be k SRPL functions in n variables X, over a field F, (q =
2™), such that g > 2™. Collectively, we will refer to these polynomials as F'. Let f be another
SRPL function in X. Then if there exists a probabilistic poly-time (in lgq) algorithm ST,
such that the distribution f(X) is statistically indistinguishable from the distribution ST (X),
then f is F-interpolatable.

Proof: We show that if f does not satisfy at least one of F-interpolatable properties (i) or
(ii), then f is not efficiently simulatable using F'. Then from this theorem and Lemma 28,
it will follow that deciding whether an efficient simulator exists is equivalent to checking
F-interpolatability, which can be done in computational time independent of 1g q.

Since f(Z) is a pseudo-linear polynomial in X, let its representation in terms of the basis
be given by j(f,-). Since each of the polynomials from F i.e. fi(Z), fo(Z),...., fi(Z) is pseudo-
linear, it can also be represented by j(fs,-) (s € [1..k]). Further, each linear combination of
F' is represented similarly.

So, first consider the case where f does not satisfy (i). In other words, for some ¢ € [1..t],
j(f,7) is neither $, nor for any linear combination ¢ of F' (including zero) is j(f,) equal to
3 (fss)

j(¢,i). Thus, by Lemma (21), pg(f R linearly independent of all the non-random p;

(2

(wlo.g let’s say s € [1..k]). Let J C D correspond to the guard g;. Thus, pg(f’i) and all

pf(fs’i) (for s € [1..k]) are linearly independent of .J. Let r be the rank of .J, and k¥ < k be
the rank of pf (Fs:4) collectively. Since pf (79 ig linearly independent of all pz ¢ S’i), we have that
r+ k' + 1 <n. Now, the subspace corresponding to J set to zero has dimension n — r, and
hence has ¢"~" points. However, we are interested in points where all expressions in D\J
evaluate to non-zero values, which would guarantee that g; = 1, and all other guards are
zero. Recall the subspace P;(X) generated by all variables not in the set R corresponding
to guard g;. Now, D\J is a union of cosets of (n — r) dimensional space P;(X) shifted by
i), a k’-ranked basis of p/ (fo:1)

7)

subspace J. Consider a basis B for P;(X), comprising of p! o
and n —r — 1 — k’ other linearly independent expressions B'.

Assume the field F, is of size at least 2!, and hence has n + 1 linearly independent
(over F3) elements e;. Thus, for every injective map setting B to these e;, there is a distinct
solution to J being zero, and all of D\J evaluating to non-zero values. Thus, there are at
least (:‘:i) (n —r)! such points in (F,)".

So, we fix p)Y*") to e, (s € [L..K]; assume w.Lo.g. that the first &’ formed the basis), and

similarly fix the B’ expressions to eg41 to €,_,—1. This still leaves at least (n+1—(n—r—1))
choices for p/) Thus, we have the situation that there are two points in (F,)" where f
evaluates to different values, whereas F' has the same value. When we extend this argument
to distributions, we observe that the k functions which are non-random have a constant
distribution (their value is fixed given just) and also f is a constant distribution. The
functions in F other than these k functions are uniform distribution. Therefore, collectively
the counter-example generated above are also easily detectably different distributions, and
hence f cannot be a function of F.

Now, consider the case where f does satisfy condition (i), but condition (ii) is violated.

f77:) (¢* 7i

In other words, for each ¢ € [1..], pg 9 is same as some P), but there exist a and b in

Approved for Public Release; Distribution Unlimited.
148

[1..t] which are F-equivalent, but one of the following two cases arise:

Case 1: j(f,a) # $ and j(f,b) # $, but ¢,’s linear representation coefficients ¢, differ
for a and b.

Again, we will demonstrate two points where I’ evaluate to the same value, but f eval-
uates to different values.

Again, let’s assume that the underlying field is large enough to have at least &’ linearly
independent (over F3) elements, say e;.

Now we have two sets, .J, corresponding to guard g,, and J, corresponding to guard g.
However, there is an easy solution for setting J, to zero, and setting pi /> (s € [1..K']) to
e,. Similarly, there is a solution for setting .J, to zero and setting pj/® (s € [1..K]) to es.
Thus, in both cases all f; (s € [1..k]) evaluate to the same value, but f being a different
linear combination in the two cases, evaluates to different values.

Case 2: j(f,a) =% #j(f,b).

In this case, we construct a counter-example in exactly the same manner as in Case 1.
For guard g,, we observe that f will follow a uniformly random distribution, whereas with
guard g,, f has a constant distribution. On the other hand the inputs have statistically indis-
tinguishable distributions with the given counter-examples. Hence, f cannot be a function
of F.

O

Completeness Theorem for Randomized Simulators and Iterated Composition of
SRPL Functions In this section, we consider SRPL functions which can take arguments,
modeling oracles which are SRPL functions of secret values and arguments. Thus, for in-
stance it may be required to find if there exists a randomized simulator which given access
to functionalities which are SRPL functions of secret parameters X and arguments supplied
by simulator/adversary, can compute a given SRPL function.

This generalizes the problem from the previous sections, where the simulator could not
pass any arguments to the given functions. For simplicity, we will deal here with functions
which only take a single argument, and thus all the functions can be written as f;(Z,y), each
SRPL in ¥ and y.

So, given a collection of £ SRPL functions F'(X,y), we now define an iterated compo-
sition of F'. Let F, be the underlying field as before. An iterated composition o of F'is a
length ¢ sequence of pairs (¢ an arbitrary number), the first component of the s-th (s € [1..t])
pair of ¢ being a function ¢, from F', and the second component an arbitrary randomized
function 74 of s — 1 arguments (over JF,).

Given an iterated composition o of F', one can associate a function f? of X with it as
follows by induction. For o of length one, f7 is just ¢1(Z,v1()), recalling that ¢, € F. For
o of length t,

f7@) = (@, (7 (), f72 (D), .. f711(T))) (31)
where oy; is the prefix of o of length j.
Since, SRPL functions in n variables over F, are just polynomials in n variables, there is a

Approved for Public Release; Distribution Unlimited.
149

finite bound on ¢, after which no iterated composition of F' can produce a new SRPL function
of the n variables. The collection of all functions that can be obtained by iterated composition
of F will be referred to as terms(F’). If we restrict 75 to be SRPL functions of their s — 1
arguments, we will refer to the iterated composition as SRPL iterated composition of
F', and the corresponding collection of functions associated with such sequences as SRPL
iterated terms or srpl-terms(F’). Note that in this case 7; is just zero.

Note that an arbitrary randomized program can only compute a randomized function
of the terms, whereas an arbitrary SRPL program can only compute an SRPL function of
the SRPL terms. An iterated composition will be called an extended SRPL iterated
composition of F' if v, is either an SRPL function or a constant function ¢(Z) evaluating
to an element ¢ in F,. For each such ¢, the corresponding collection of functions associated
with such sequences will be called extended-srpl-terms(F, c).

We will also need to refine the definition of terms(F'), by restricting to terms obtained
within some T iterated compositions, for some positive integer 7. Thus, termsy(F') will
stand for the collection of functions obtained by iterated compositions of F' of length less
than T'. In particular we will be interested in T" which is bounded by polynomials in log ¢
and/or n, the number of variables in X.

Similar to Section 10.4.3.1, we first state an interpolatable property which is a sufficient
condition for an SRPL function of X to be an SRPL function of srpl-terms(F).

Recall the functions in F' now have an additional argument y. As before, D(G), for any
set of functions G will denote the set of all linear combinations (over F3) of functions from G.
Below we define the class Z¢(F) of SRPL functions in X, for ¢ an arbitrary natural number.
In fact, since the inductive definition will sometimes use functions in both X and y, we
will just define this class as SRPL functions in X and y, though for different y, they would
evaluate to the same value. In other words, for an arbitrary guard g,(%), which corresponds
to a subset J C D(X) (J is closed under addition), there are many super-guards when
viewed as a function of X and y, namely with subsets J' C D(X,y) (J' closed under addition)
such that J C J" and (D(X)\J) C (D(X,y)\J’). Thus, for all these super-guards, a SRPL
function ¢(X) will have the same j(¢,) value (see Section 10.4.1.2).

However, and more importantly, with y set to some linear expression I(Z) € P,(X)
(including zero), ezactly one of these (super-)guards has the property that J/, . = J (Note
the subscript y|/(Z) means [(Z) is substituted for every occurrence of y in J'). This particular
J' is given by

J' = D(J {y +U(z)}) (32)

In this case we say that this super-guard of g, is consistent with y+1(Z) = 0. The super-guard
corresponding to J' = J will be called the degenerate super-guard of g,(Z).

Now we define the SRPL function which is the composition of f; and h, i.e. fsoh, where
fsis a SRPL function in X and y, and h is a SRPL function in X, by defining its components
in the basis for SRPL functions. For any guard ¢;(Z) (of functions in X), let ¢;(%,y) be the
unique (super-) guard, mentioned in the previous paragraph, which is consistent with y set
j(hyi)

(

to p! note the map j here is for guards corresponding to X, and in general it will be

Approved for Public Release; Distribution Unlimited.
150

clear from context whether we are referring to map j for guards corresponding to X or X, y).
Then, define

j(fsoh,I) /- i (fs) /= j(hyi) s -
7@ y) = o 0 @ M (@) (33)
Further, for all I’ which are super-guards of i, we set pjl'gf M1 46 be the same value (as

fs o h is only a function of X). Note that since each p is just a linear function, this implies
that each component of fs o h is a linear function of X (and hence X,y). In particular,
(fs 0 h)(Z) = [fo(Z, h(Z)).

Define Compose(F(X,y), H(X)), where F(X,y) are a set of SRPL functions in X,y
and H(X) is a set of SRPL functions in X, to be the set of all functions f; o h, where
fs€ F(X,y)and h € H(X).

For each SRPL function f, of X and y, we also need to define a SRPL function (in X
called degenerate(fs), which for each guard g,(¥), defines the corresponding p function
using its degenerate super-guard. Thus,

pg(degenerate(fs)va) (7) = pg(fS’I) (Z,0),

where [is the degenerate super-guard of g,.
Now, we are ready to define the iterated SRPL functions. Define

I°(F) = D(Compose(F,degenerate(F))) (34)
IHYF) = D(T'(F)UCompose(F,I'(F))), fori > 0. (35)

Since, these functions are just polynomials over finite fields (in fact defined over F;), the
above iteration reaches a fix-point at an ¢ bounded by a function only of n. We will denote
the fix-point by just Z(F).

Now, we generalize the definitions of F-equivalence and F-interpolatable from Sec-
tion 10.4.1.3. Two guards ¢,(7) and g,(Z) are said to be F*-equivalent if for every ¢()
in Z(F), it is the case that j(¢,a) = 0 iff j(¢,0) =0 and j(¢,a) = $ iff j(¢p,b) = $.

The definition of F*-interpolatable property is same as the F-interpolatable property
except that D(F') is replaced by Z(F).

Instead of the closure Z(F'), it will also be useful to define the following set of functions

C = U Compose(F, Z'(F)) U Compose(F, degenerate(F)), (36)

and it is easy to see that Z(F) is just the linear closure of C.

Lemma 29 If f is an SRPL function of n variables X over a field F,, and f satisfies the
F*-interpolatable property, for some set F' of SRPL polynomials in X, vy, then there exists a
probabilistic poly-time (in lg q) algorithm S, such that the distribution f(X) is statistically
indistinguishable from the distribution S¥(X), with error at most 2"/q.

Approved for Public Release; Distribution Unlimited.
151

Proof: The proof is similar to the proof of Lemma 23, but there is a small difference due
to the probabilistic nature of this lemma.

Consider T = [1..4] / =p, where ¢ is the number of guards, i.e. |G(X)|. We pick the
smallest element from [1..t] to represent each equivalence class in 7. Define a function h(7)

to be the following:
h(z) & SF(2) (37)

where S* is as defined below. For each u, ¢, is some function ¢, € Z(F) satisfying the
F*-interpolatable property (i).

Algorithm S* (%)
for all we [l...t]/ =p
guardfound = true
for all ¢ € Z(F)
Yo < P(Z); M < o(7)
if 79 # 71 then israndom := true else israndom := false

j(p,u) =% and israndom := true
if or j(¢,u) =0 and 79 =0 and israndom := false
or j(¢,u)#0 and 79 # 0 and israndom := false

then continue for loop

else guardfound := false; exit for loop

if guardfound = true then result < ¢,(¥); exit for loop
else continue for loop

return result

Now, the proof that h=f, i.e. for all © € (F,)", h(Z) = f(Z), is identical to the proof in
Lemma 23.

For the efficiency argument, we now show a simulator with calls to extended-pl-terms(F (X, y), Seed).
Observe that for any fs, exactly one of the following cases hold, for all y linearly independent
of Z:

Case 1: f,(Z,y) = degenerate(f,)(¥)
Case 2: f,(7,y) = degenerate(f,)(T) +y

Now define a function h(Z, ¢) to be same as h, except every occurrence of degenerate(f,)(7)
is replaced by either of the following:

fs(Z,c) in Case 1 (38)
fs(Z,¢) + ¢ in Case 2

Approved for Public Release; Distribution Unlimited.
152

(recall, fs is a function of X and y, whereas degenerate(fs) is a function of only X). Then,
it is easy to see that ﬁ(f, ¢) is in extended-pl-terms(F) c). We next show that for every &,
with ¢ chosen uniformly from F,, probability that A(Z,¢) = h(Z) is at least 1 — 2"/q. For
each #, one and only one guard g, is satisfied. the probability that for this guard, ¢ = I(¥),
for some () € Ps(X) is at most 1/¢q. Hence, by union bound, over all possible {(Z), the
probability that ¢ equals any [(Z) is at most 2" /q, as | X| = n. These are the only cases in
which degenerate(f;)(Z) may differ from f,(Z, c) or fs(Z,c) + ¢, as the case may be. O

Theorem 11 (Main) Let fi, fo, ..., fx be k SRPL functions in n variables X and an ad-
ditional variable y, over a field F, such that q¢ > 2'. Collectively, we will refer to these
polynomials as F(X,y). Let T be a positive integer less than 2"(< ¢'/*). Let f be an-
other SRPL function in X. Then if there exists a probabilistic poly-time (in 1gq) algorithm
Stermsr(F(X)) " sych that the distribution f(X) is statistically indistinguishable from the dis-
tribution Stermst(F(Xu) (X)) then f is F*-interpolatable.

Proof: We show that if f does not satisfy at least one of F*-interpolatable properties (i) or
(ii), then f is not efficiently simulatable using F'. Then from this theorem and Lemma 29,
it will follow that deciding whether an efficient simulator exists is equivalent to checking
F*-interpolatability, which can be done in computational time independent of lg q.

As in Theorem 7, we have two cases. In both cases we will show the non-existence of a
probabilistic poly-time simulator (i.e. with for each Z, the probability of the definition being
correct must be more than, say a very liberal, ¢'/*). Before we go into the analysis of the
two cases, we recall a few relevant definitions, and state some useful properties.

Recall from Section 10.4.1.2, that Q(X) is the set of all basic SRPL polynomials in
variables X, and, G(X) is the set of all guards amongst these polynomials Q(X). Fur-
ther, |G(X)| = t. Also, recall for each guard g; its corresponding set R from its REPSELIN
representation, and the corresponding subspace Ps(X).

Also, recall the super-guards g;(7,y) corresponding to guards g;(#). Thus, if J corre-
sponded to g;, then some J' such that J C J" C D(X,y), corresponds to super-guard g;.
Further, (D(X)\J) C (D(X,y)\J’). Hence, if some y + [(Z) is in J', we can w.l.o.g take
as the corresponding R’ (of g;) to be R U {y}. Thus, in such cases p;(Z,y) are just linear
expressions in X\ R. If on the other hand, for no I(Z) it is the case that y + [(Z) is in J',
then R' = R, and p;(¥,y) will be a linear expression in (X\R) U {y}.

Now we are ready to analyze the two cases.

Case 1: First, consider the case where f does not satisfy property (1) of F*-interpolatable.

Then, it is the case that there exists an s € [1..t], such that for every linear polynomial ¢
inZ(F), j(f,s) # j(é, s), and further it is the case that j(f, s) is not $. Thus, by Lemma 21,
P2 g linearly independent of all non-random p2'>*), with ¢ € C.

Let J C D correspond to the guard g,. Thus, pg(f’s), as well as all pg(¢’s) (¢ € C) are
linearly independent of J (see the paragraph after definition of REPSELIN polynomials). Let
r be the rank of J, and &’ be the rank of pi("“) collectively. Thus, r + k' +1 < n. Consider a
basis B of Py(X) consisting of pg(f ’S), a basis B” of pg((z)’s), and another linearly independent
set B of expressions in X\R (of rank n —r — k' —1).

Approved for Public Release; Distribution Unlimited.
153

Note that since j(f, s) is not random, it is a deterministic function of Z. Also, each term
in termsy(F(X,y)) is an SRPL function, and hence is either a deterministic function of &,
or a random variable r. Thus, our aim is to demonstrate two different settings of X to values
in F,, such that f(Z) has different values, while all of termsr(F (X, y)) have the same value
(or distribution 7) at the two settings. Now, fix a particular length 7" iterated composition
o of . We will now show that each of ~,(f71(Z), f712(Z), ..., f71t-1(Z)), t € [1..T], as well
as flt(Z) is a function of only B”, and is independent of ps(f) and also independent of B’
defined above. Thus in choosing the two different settings for X, we can first set the ba81s
B" to some value, which will fix the 7(...) distribution, and then we can set the B’ and ps(f ’
to two different values, while assuring that all consistency requirements are met.

For the base case, v1() is clearly not a function of pg(f ,3)7 or B'. Now, for the induction
step, consider f71t-1(Z). which is given by ¢,_1(Z, v_1(f711(Z), f712(Z), ..., f7r-1(Z))). where
¢i—1 is in F. Now, by induction the 7;_1(...) expression is not a function of pg(f’s) or B.

Now, it is possible that v,_;(...) is equal to some pl\? (&) (¢* € C), in which case

G—1(Z,v-1(...)) would just equal p] A)(f y), for I corresponding to the unique super-

guard ¢;(Z,y) which is consistent Wlth y+pl)() = 0. But, p] 200D is either pl)(:c)

(¢™* € C) or such an expression plus y, by definition of C and definition of p} §(fsoh, I) (Z,y). In

either case, it is a function of only pi'>* (&) (¢ € C) by induction.

(

If 4_1(...) is not equal to any pl*"*(Z) (¢* € C), we will claim that we can choose & so

as to assure that v;_;(...) is not equal to any linear expression in B’ (and i ’S)) either, with

probability > 1/¢'/* (the probability is over simulator’s randomness and the randomness
j(pe—1,1)

returned in the terms). In this case ¢;—1(Z, v—1(...)) returns p; (Z,y), where I corre-
j(b1,)(f, y) is
again either ps ’8)() (¢** € C) or such an expression plus y, since C includes Compose(F,
degenerate(F)).

Now, we demonstrate the two different settings of X to values in F,. We first choose &’

linearly independent (over F») values in F, and set the basis B” to these values, so that all

expressions pi(qb’ (¢ € C) are non-zero.

sponds to the degenerate super-guard of g4 given by J' = J. However, such p}

Then, assuming the above claim holds, over T' steps, the probability of some 7, being a
linear expression in B’ is at most 7'/¢'/2. So, with probability 1 —1/¢'/?, each =, is not equal
to some linear expression in B’; and hence the terms returned (i.e. ¢;) will be independent
of B'. Now, we show how to set B’ and pg(f’s), so that the above claim holds. Let I' be the
set of values ¢ (in the field) such that in some step (¢ in T'), the probability of ~,_; being ¢
is more than 1/¢'/2. (More formally, the proof should be done by maintaining an induction
hypothesis about the claim, and building the set I' inductively.) Note that |T'| < ¢'/2x (T+1).

Next, we inductively assign values to the basis B'(of size n —r — k' — 1) as follows, so
that the above claim holds. Let this basis be denoted by 11(Z), ..., l,—_r—1(Z). For [;(¥),
we pick any value in F, which is not equal to any value in D(B"”) + I', where the sum of two
sets is defined naturally. For, the induction step, we choose for [,(Z) a value in F, which is
not equal to any value in D(B” U {l;(¥),....,[,_1(Z)}) + T.

Approved for Public Release; Distribution Unlimited.
154

Since plt/* (%) is linearly independent of B” (as well as B'), we choose a value for it which
is not equal to any value in D(B" U {l1(Z),...,ln_r_—1(Z)}) + T'. Further we have at least
two choices for it, given that ¢ > 2+ 2"~ x |T'|. Thus, no linear expression in B’ or i) g
ever in I'. Thus, f takes different values on these two settings os &, whereas with probability
1—-T/q"? > 1—1/¢"*, all of termsy(F(X,y)) take the same value.

Case 2: Now consider the case where condition (i) holds, but condition (ii) of the F*-
interpolatable property fails to hold for f. This case is handled as in Theorem 10 but

adapted with the analysis of Case 1 here. O

10.5 Proof Automation in the Universally Composable model

The Universally Composable (UC) framework is a formal system for proving security of
computational systems such as cryptographic protocols. The framework describes two prob-
abilistic games: The real world that captures the protocol flows and the capabilities of an
attacker, and the ideal world that captures what we think of as a secure system. The no-
tion of security asserts that these two worlds are essentially equivalent. A cryptographic
motivation with an example is given in Section 10.5.2.

Formally, a proof of security in the UC model boils down to the following: as input, we
are given two sets of algorithms:

1. Ideal Functionality: Set of algorithms F' = {F}, F5,---}

2. Real Protocol: Set of algorithms P = {Py, P, - }.

We say that P realizes F' if it is possible to construct an algorithm S, called a simulator,
that invokes the functions in F', such that the following holds:

For any PPT algorithm A, there exists a PPT algorithm S, such that for any PPT algorithm
Z, the execution of A with calls to P is indistinguishable from the execution of S with calls
to F'.

We describe a language L¥®f in Table 2 for which we are able to develop a decision
procedure to decide realizability of a given ideal functionality by a given real protocol.

Definition 25 (L%®) An Ideal Functionality F and a real protocol P are described in the
language LS if

o [is a set of programs { f\(T,9), fo(T,9), - - }-

e P is a single program {f(Z)}.

such that f1(Z,7), f2(Z,7), -+ and f(Z) are all described as L>®F programs, as defined in
Table 2.

The semantics of this language is that Z is a set of inputs passed by the environment
at the outset of execution and ¥ is a set of parameters that the simulator is allowed to pass

Approved for Public Release; Distribution Unlimited.
155

Table 2: Programs in the Language L@,

(expressions) AE = x1 x| - variables
XE = AE | AE® XE bitwise xor expression
BE = true | (XE == XFE) | BEABE | -BE boolean expression
(assignments) a n= z—$ assign new random number
z:=XE assign xor expression
(program) T BES a; single action
wa; sequence of actions
if BE then mwelse 7 conditional

to the functionalities. All the parameters and random numbers are represented as lg ¢-bit
strings, corresponding to elements in F,. The programs in F' can be called in any order and
an arbitrary number of times, whereas P is called only once. While fairly constrained, we
provide a cryptographic example and motivation for this language in Section 10.5.2.

Theorem 12 (Completeness of L) There is a decision procedure, which given an
Ideal Functionality F' and a Real Protocol P described in the language LS decides if
P realizes ' in the Universally Composable model.

We prove Theorem 12 by starting off with the following lemma.
Lemma 30 All the variables in an L% program f(Z) are randomized pseudo-linear in 2.
Proof: The proof is by structural induction on the grammar of expressions in L¥®if. Since
there are no loops in the language, we can assume wlog that no variable is assigned twice.

In the base cases, the guards are derived according to the following rules ([P] denotes the
field polynomial corresponding to expression P) :

2] =z, for atom z (39)
XEy & XE) — [XE\+ [XE (40)

(41)
[true] =1 (42)
[XE, == XE,] = [XE, + XE,)*! (43)
[BE, A BE,) = [BE1|[BE,] (44)
[~BE] =1+ [BE] (45)

The conditional actions have an effect which can be viewed as follows for every relevant
variable: if BF then z := XFj else x := X E,. Then we will have [z] = [BE][X E1] +
["BE][X E], since ([BE], [-BE]) € {(0,1), (1,0)}.

Approved for Public Release; Distribution Unlimited.
156

It is easy to see that expressions constructed as above are pseudo-linear in the atoms. For
the inductive case, xor-ing two pseudo-linear expressions again is a pseudo-linear expression.
The only non-trivial case is the construction of conditional expressions from pseudo-linear
expressions. We have to prove the following: Any pseudo-linear polynomial raised to the
power q — 1 is a sum of guard expressions. Given this the induction is straightforward.

To prove this recall that PLs can be expressed as sum of EPSELIN terms [],.» sl (B)rt .
[Te,(1+1(Z)*") - p(&). Observe that the product of any two distinct EPSELIN guards
HleD/J1 (@) [Les, (T+ 1(#)77") and HleD/J2 (&) - [Le,(1+ 1(#)771) is 0.

Therefore, we can write down any pseudo-linear polynomial (in) as:
GE = (EPS, + EPSy 4 ++-) = (G1.Ly + Go.Ly + - - +),

where the F'PS;’s are EPSELIN terms, the GG;’s are guards and the L;’s are the corresponding
linear expressions (after gathering all the linear terms with the same G; together). Now, for
any substitution of the atoms 7, at most one of the GG;’s is equal to 1 and the rest of the G,’s
are (. This lets us write:

0 if all the G;(Z)’s are 0
Ll(f)q_l if Gl(f) =1

Gi.Ly+ Gy Ly +---) ! =
(Grla+ Golat-) Lo()"" if Go(7) = 1

(46)

Hence this is exactly equal to the polynomial (Gl.Lg_l + Gg.Lg_l + - -+) which is a sum of
guard expressions in the atoms. U

We now proceed to the main proof.

Proof:[Theorem 12] By Lemma 30, all the functions in P and F compute randomized
pseudo-linear functions in the inputs. By Lemma 25, with negligible error, we can assume
that these are given as SRPL functions.

Now, by Theorem 11, if f is simulatable using termsy(F(X,y)), with T < ¢*/4, then f
is [*-interpolatable. F*-interpolatability can be decided by computing Z(F’), which can be
computed in time independent of 1g q. Further, by Lemma 29, if f is F*-interpolatable, then
there exists a probabilistic polynomial time (in lg¢) simulator.

O

10.5.1 Extension with Persistent States and Uninterpreted Functions

Consider an extension of the language L¥®f | where we add a fixed number of variables to the
Ideal world that are persistent across subroutine calls. Let us call this language L%®if:state,
We describe the key ideas for developing a decision procedure for L% ®ifstate,

We first construct stateful iterated compositions of L¥®ifstate subroutines. We construct
a tree where each node is such a composition and its subtrees denote further compositions
extending its own computation. The key observation is that there is only a finite number

Approved for Public Release; Distribution Unlimited.
157

of such nodes which are distinct modulo renaming of uniformly random quantities. In other
words, the nodes fall into a finite number of equivalence classes modulo permutation of uni-
formly random quantities and hence represent the same randomized algorithm. An important
property of these equivalence classes is that two members of a class lead to subtrees which
are equivalent as sets.

This leads to the conclusion that there is a finite set of stateful iterated compositions.
A considerably harder theorem is to prove completeness: if there is a probabilistic poly-
time simulator, then there is a simulator which is s stateful iterated composition of the
subroutines.

10.5.1.1 Key ideas for encryption and signatures. The UC formulation of the en-
cryption and signature primitives makes them expressible in very abstract terms. We leverage
the fact that standard notions of security of these primitives have been shown to be equiv-
alent to the UC formulation. Specifically, we express protocols in the hybrid model, where
the concrete operations for encryptions and signatures are replaced by their ideal counter-
part. The proofs of security translate due to the Composition Theorem supported by the
UC framework.

Signatures. The UC formulation of signatures is given in Figure 24. In addition to the
operations in L¥® we need functions (viz., s and v) and storage (for the records). For
a single session of a protocol, the honest protocol participants only do a bounded number
of signatures. However, the adversary may make an unbounded number of calls to the
verification function - but this does not create any requirement for more storage. Hence the
language L%®ifstate syffices for the storage part.

As regards the function variables s, v,v’, observe that they do not have to satisfy any

equation. Hence they can be treated as uninterpreted function symbols. For example s(m)
can be represented as the tuple (“s” m), where “s” is a constant string. To support these
entities, we only need to define tuples, constants and equality of tuples.
Public-Key Encryption. The UC formulation of PKE is given in Figure 25. The discussion
on signatures carries over to PKE. In addition, we need to distinguish the ciphertexts being
output on separate invocations of the Encryption subroutine. This can be done by tagging
the ciphertexts with a uniformly random quantity generated at each invocation: [r « §; ¢ :=
(¢',0,7);].

However, in contrast to the signature functionality, the adversary can induce a require-
ment for unbounded storage by calling the Encryption subroutine multiple times. The lan-
guage L¥®ifstate is only able to support a bounded number of such calls - hence we only
have a conditional security proof. While for individual protocols it can be rather simple to
prove that it suffices to show realizability for an adversary which makes only a bounded (or
even single) number of calls to the hybrid encryption functionality, it is an interesting open
problem to prove a structural meta-theorem which establishes the sufficiency of a bounded
number of calls for a general class of protocols.

Approved for Public Release; Distribution Unlimited.
158

Functionality Fl;,:

e Key Generation: Upon receiving a value (KeyGen, sid) from some party S, ver-
ify that sid = (S5, sid') for some sid’. If not, then ignore the request. Else,
hand (KeyGen, sid) to the adversary. Upon receiving (Algorithms, sid, s,v) from
the adversary, where s and v are descriptions of feasible algorithms, output
(Verification Algorithm,sid,v) to S.

e Signature Generation: Upon receiving a value (Sign, sid, m) from S, let 0 = s(m),
and verify that v(m,s) = 1. If so, then output (Signature,sid,m,o) to S and
record the entry (m, o). Else, output an error message to S and halt.

e Signature Verification: Upon receiving a value (Verify,sid, m,o,v") from some
party V', do: If v" = v,v(m, o) = 1, and no entry (m, ¢’) for any ¢’ is recorded, then
output an error message to S and halt. Else, output (Verified, sid, m,v'(m, o)) to
V.

Figure 24: Ideal Functionality for Signatures

Functionality Fjp.:
The message space is GF'(2™). Let 0 be the zero element of GF'(2™).

e Key Generation: Upon receiving a value (KeyGen, sid) from some party D, ver-
ify that sid = (D, sid") for some sid’. If not, then ignore the request. Else,
hand (KeyGen, sid) to the adversary. Upon receiving (Algorithms, sid, e, d) from
the adversary, where e and d are descriptions of feasible algorithms, output
(Encryption Algorithm, sid,e) to D.

e Encryption: Upon receiving a value (Encrypt, sid, m, ¢’) from some party V', do: If
e # e, or the decryptor D is corrupted, output €'(m). Else, let ¢ = €/(0) and record
(m,c). Output (Ciphertext, sid, c) to E.

e Decryption: Upon receiving a value (Decrypt,sid,c) from D, do: If there is a
recorded entry (m, ¢) for some m then return (Plaintext, sid, m) to D. Else, return
(Plaintext, d(c)).

Figure 25: Ideal Functionality for Public-Key Encryption

Approved for Public Release; Distribution Unlimited.
159

10.5.2 Example of Automation

Password-based key exchange is an important security problem which has been studied
extensively in cryptographic research [BM93], and which brings out the power of the UC
framework particularly well. Canetti et al [CHK'05] proposed an Ideal Functionality for
password-based key exchange which is formally described in Figure 26.

Functionality FpwkE

The functionality Fpwky is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, P;, P;, pw,role) from party P;:
Send (NewSession, sid, P;, P;,role) to S. In addition, if this is the first NewSession
query, or if this is the second NewSession query and there is a record (Pj, P;, pw'’),
then record (P;, Pj, pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, P;,pw’) from the adversary S:
If there is a record of the form (P;, Pj, pw) which is fresh, then do: If pw = pw’, mark
the record compromised and reply to S with “correct guess”. If pw # pw’, mark the
record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, P;, sk) from S, where |sk| = k:
If there is a record of the form (F;, Pj, pw), and this is the first NewKey query for P,
then:

e If this record is compromised, or either P; or P; is corrupted, then output (sid, sk)
to player PB;.

e If this record is fresh, and there is a record (Pj, P;,pw’) with pw’ = pw, and
a key sk’ was sent to Pj, and (P}, P;,pw) was fresh at the time, then output
(sid, sk’) to P;.

e In any other case, pick a new random key sk’ of length k and send (sid, sk’) to
P;.

Either way, mark the record (P;, Pj,pw) as completed.

Figure 26: The password-based key-exchange functionality Fowke

Consider two parties FP; and P; that wish to come up with a common cryptographically
strong key based on the fact that they share the same password. The idea is to capture
the fact that modulo the adversary outright guessing the password exactly during an active
session between the parties, it has no control (or information) on the key being generated. It
is allowed to interrupt sessions by tampering with the messages being exchanged, but doing
so only results in the parties ending up with different uniformly randomly distributed keys.
If, however, the session is not interrupted, the parties end up with the same key which is

Approved for Public Release; Distribution Unlimited.
160

distributed uniformly and randomly and is not controlled by the adversary.

In the following discussion, we will overlook the session ids for simplicity although it
is straightforward to add them. We describe a protocol Iljcpwie, in Figure 27, which is a
candidate to realize Frwkg. This is a protocol based on the Ideal Cipher model [BPROO].
In the ideal cipher model, the results of two decryptions are the same if the key is identical.
Otherwise, the results are uniformly and independently random. The protocol is symmetric
from the perspective of both the participants - so we describe the actions of just one party
P;. Both parties get a password from the environment £. Party P, generates a random
number 71, encrypts it and sends the ciphertext ¢; to the peer. When it receives a response
cy, it first checks whether its own message was reflected. If so, it outputs a random key to
the environment. Otherwise, it decrypts the response using its password pw; and xors the
plaintext with ;. The resulting quantity is output as its key to the environment.

Approved for Public Release; Distribution Unlimited.
161

Party P, Adv Party P;

E E

| pun | pwy

ry—$ ry — $

C1 — ENCpy, (1) Co <= €NCpu, (T2)
= &

if (), ==c¢;) then sk; «— § if (¢} == c¢y) then sky «— §

else else

dy «— decpy, (ch) dy «— decpy,(c))

sky — 11 P dy Sko «— 19 @ dy

L sky L sky

E E

Figure 27: Protocol for Password-based Key Exchange using Ideal Cipher.

Consider the following ideal functionality for the ideal cipher primitive. The functionality
takes two arguments: a key and a plaintext. It has a table where each entry is a triplet
(key, plaintext, ciphertext). The table is initially empty. It supports two subroutines:
encrypt(key, plaintext) and decrypt(key, ciphertext). The encrypt subroutine, given input
(key, plaintext), generates a random number r, stores (key, plaintext,r) in the table and
outputs r. The decrypt subroutine, given input (key, ciphertext), looks up if there is an
entry (key, p, ciphertext) in the table. If so, it outputs p. Otherwise, it generates a random
number r, stores (key, r, ciphertext) in the table and outputs 7.

Now consider the real-world scenario where the adversary intercepts the first message ¢;
and changes it to ¢| before transmitting to P;. The adversary’s action may involve querying
the ideal cipher in the hybrid model. More importantly, if the password is weak, the adversary
maybe able to guess the password, and hence a proper simulation would require the simulator
to extract this password guess from the call to the ideal cipher, and use that in the TestPwd
subroutine of FowkE.

We now describe how our decision procedure automatically figures out such a simulator,
as the languages for the real protocol (in the ideal cipher hybrid model) and for the ideal

Approved for Public Release; Distribution Unlimited.
162

functionality Frwig are as covered by our theorems and their extensions. First, however we
need a theorem which states that it suffices to consider an adversary which makes only a
single call to the hybrid ideal cipher functionality. Such a theorem is rather easy to prove
for our particular protocol, but it is likely that such meta-theorems can be proved as general
structural theorems. We can then inline a single ideal cipher call in a serialization of the
protocol (the variables input by the adversary can be named, say kk and rr). Observe that
the following operations are sufficient to describe the ideal cipher functionality: equality
testing, conditional branches, random number generation and table storage and lookups.
When we consider a constant number of calls to the ideal cipher, the table operations reduce
to assignment statements and equality testing. The ideal functionality Fpwkg is clearly
supported by our language extended as in Section 10.5.1. Finally, notice that the variables
¢y and d, are also available to the simulator. Thus the decision problem is whether the
serialization of the protocol (with a single inlined ideal cipher call) can be obtained as a
randomized iterated composition of Fowir, where the simulator also has access to variables
kk, rr, ¢, and d,.

10.6 Undecidable cases

In this section we describe one language L., for which we are able to prove that no algo-
rithmic procedure exists to decide equivalence. In particular, this arises when unbounded
table lookup/storage operations are allowed (not even random access, but just storing and
detecting whether some string is there in the table), even when there are no arithmetic oper-
ations, loops in subroutines or random number generation. Formally, we have the following
theorem:

Theorem 13 (An Undecidable System) Let Ly, be a language with input / outputs to
the environment, send / receives to the adversary, conditional with equality checking of strings
and table storage/lookup. We are given a real protocol P and a ideal functionality F with all
subroutines described in Li,,. We show that it is impossible to algorithmically decide whether
P realizes F .

We describe the language L., formally in Table 3. Note that there is no arithmetic,
logical operation or nonce generation in the language. On the other hand, strings can be of
arbitrary length.

10.6.1 Analysis

Theorem 14 The language Simyg, = {(P,F) | P realizes F, P and F are described in Ly}
1s undecidable .

Proof: We reduce the problem {M | M is a Turing Machine which accepts the empty string €}
to Simyq,. Specifically, given the state transition representation of M, we construct a (P, F)
instance whose membership in Simy,, is equivalent to deciding whether M reaches an ac-
cepting state on input the empty string.

Approved for Public Release; Distribution Unlimited.
163

Table 3: L;u: Language definition for the undecidable system

(atomic terms)

(terms)

(table)

(actions)

(booleans)

(program)

(real protocol)

(ideal functionality)

RS S I

tab

send ¢

receive y
output ¢

y:i=1

store(t, T)

t=t

lookup(t, T)

a;

Ta;

if (b) then {m}

atomic term variable
string

term variable

atomic term

pair of terms (bounded)
table

send a term ¢

receive term into variable y
output ¢ to the environment
assign t to y

store ¢t in 7

equality check

true iff ¢ is in 7

single action

sequence of actions
conditional

one program

set of programs

164

Approved for Public Release; Distribution Unlimited.

Construction of P.

The real protocol P has just the following subroutine P;: | [receive x;output “success”;

Construction of F.

The functionality F models construction of “cells” corresponding to individual cells in
the configuration of a Turing Machine computation. F consists of several small subroutines
which perform operations like populating the table with the initial cells, copying non transit-
ing cells to the next configuration, performing state transition at the TM header, detecting
acceptance state and declaring success. We give formal descriptions of the subroutines in
Section 10.6.1.1. The informal description is as follows:

e Finir: This is the subroutine which is called in the beginning. It stores some elements
in the table corresponding to the empty string e.

e F,: For each transition rule p, there is a corresponding subroutine which has the effect
of producing the next configuration according to this transition rule.

® Fiegin: Subroutine that constructs the beginning of the current configuration.
e F.: Subroutine that constructs the end of the current configuration.

o Foersist: Subroutine that carries over bits from previous configuration to the current
one, if unaffected by state transistion.

® Faccept: Subroutine that transitions to an accepting state.

o Fauccess: Subroutine that declares success upon completing an accepting configuration.

Simulation for an M that accepts e.

The construction is such that there is a way to simulate transition from one configuration
to the next. We show that if the Turing Machine accepts the empty string then there is a
way for the simulator to simulate the actions of this Turing Machine faithfully, leading to
successful calling of the subroutine F,ccess - We give an explicit procedure below:

> First Fj,; is called to store the empty string into the table.
> Let CurrentCon figuration < EmptyCon figuration
> Repeat the following:

— Call Fpegin to construct the first cell of NextCon figuration

Approved for Public Release; Distribution Unlimited.
165

— If current cell is in the neighborhood of the state cell, call F, with the correspond-
ing transition rule p. This subroutine also pushes the “end” cell, if the state cell
goes past it. Record AcceptanceState Reached if new state is an accepting state.

— Otherwise call F e, sist to copy bit from corresponding cell in CurrentCon figuration
to NextCon figuration.

— If AcceptanceState Reached is true and “end” cell is reached, let set C'allSuccess
to true.

— Otherwise, let CurrentCon figuration < NextCon figuration
> Until CallSuccess is true.

> Call Fyyecess and halt.

Impossibility of simulation for an M that does not accept e.

We show that it is impossible to register a configuration in the table, which does not
follow from an already registered configuration. Thus if there is an accepting configuration
in the table, then there must be a sequence of configurations in the table, beginning with the
empty configuration and ending with accepting configuration, such that each configuration
leads to the next by a single transition.

Every storage cell has the following structure:

Current Conf Id. Current Cell Id. Cell Element. Next Cell Id. Next Conf Id

Before any cell is stored in the table, the previous cell also has to be provided by the
simulator. It is checked whether the immediate predecessor is already there or not: the
corresponding Id’s have to match up correctly - think of this as a 2-dimensional linked list,
in which each configuration is a linked list and where Next Cell Id points to the next cell
in the current configuration linked list and Next Conf Id points to the next configuration
linked list. Each time a new configuration is being built, a new Next Conf Id has to be
provided by the simulator. The functionality checks that it is new by first checking for
presence and then storing it in the table as a type “confid” data. Similarly for new cells that
go past the current tape length, there is checking and storing of a type “cellid” data. This
combination of checks ensures the integrity of the 2-D linked list - in particular, there are no
rogue pointers to elements in number of different configurations. Ensuring that the simulator
provides the previous cell also “bootstraps” the cell records consistently - one cannot enter
a new element if the previous element is not already there. Importantly, this ensures the
following Lemma:

Lemma 31 For a given Current Conf Id linked list, it is only possible to call a unique F,.

Approved for Public Release; Distribution Unlimited.
166

This is because the simulator has to “bootstrap” up to the correct state cell following
the pointers and only a unique transition works for a given state and cell after the state cell.
Consequently, the following assertion holds:

Lemma 32 [f there is an “end” cell registered for a given Current Conf Id, the linked list
of cells with this confid is the successor of some configuration in the table.

This implies our original claim that if there is an accepting configuration in the table,
then there must be a sequence of configurations in the table, beginning with the empty
configuration and ending with accepting configuration, such that each configuration leads to
the next by a single transition. This is a contradiction since no such sequence exists for the

given M. Hence no simulator exists.
O

10.6.1.1 Ideal Functionality for the Undecidable Language This section describes
the ideal functionality for the language subset which is undecidable.

Init.

Finit © [
receive trigger;
store “conf0”.%“cell0”.“begin”. “celll” . “con 17, T;
store “conf0”.%“celll”.“gstart”.“cell2” . “conf1”,T;
store “conf0”.%“cell2”.“” “cell3”.“conf1”, T;

store ‘“conf0”.“cell3”.“end”.“celld”.“conf1”,T;

store “cellid”.“cell0”,T;
store “cellid”.“celll” | T;
store ‘“cellid”.“cell2”,T;

store “cellid”.“cell3”,T;

store “confid’.“conf0”,T;

store “confid’.“conf1”,T;

Approved for Public Release; Distribution Unlimited.
167

Transition Rule. For a transition rule p : (¢,0) — (r,1, R), we have the subroutine:

Fpi |
receive celly, cella, cells, celly, cells;

receive cell, celly, celll, celll, cellf;

parse cell] as o.01. b1. B2.07;
parse celly as o.02. ba. B3.07;
parse cellz as 0.83. “q". B4.0;
parse celly as 0.84. “zero”. B5.0';

parse cells as 0.85. by. B6.0';

parse cell| as o’.31. bi. B2.0";
parse cellé as o .fB2. ba. B3.0";
parse celli as o’.B3. “one”. B4.0";
parse celly as o'.B4. “r". B5.0";

parse cell; as o' .35. ba. Bs.0";

if (none of celly, cells, cells, celly, cells is in T)
then output “failure”;

if (cell} is not in 7)
then output “failure”;

store celll, cellly, cell), cellf in T;

]

Approved for Public Release; Distribution Unlimited.
168

For a transition rule p: (¢,0) — (r,1, L), we have the subroutine:

Fpi |
receive celly, cella, cells, celly, cells;

receive cell, celly, cellly, celll, cellf;

parse cell] as o.01. b1. B2.07;
parse celly as o.02. ba. B3.07;
parse cellz as 0.83. “q". B4.0;
parse celly as 0.84. “zero”. Bs.0';

parse cells as 0.85. by. B6.0';

parse cell| as o'.31. bi. B2.0";
parse cellh as o'.B2. “r". B3.0";
parse celly as o’.33. ba. B4.0";
parse celly as o’.B4. “one”. B5.0";

parse cell; as o' .(35. ba. B.0";

if (none of celly, cells, cells, celly, cells is in T)
then output “failure”;

if (cell} is not in 7)
then output “failure”;

store celll, cellly, cell), cellf in T;

Boundary Regions.

]:begin : [
receive celly, cells;

receive cell}, cell;

parse celly as o0.(81. “begin”. B2.0";

parse celly as o0.(32. b. B33.07;

parse cell] as o’.51. “begin”. Ba.0”';

parse celly as o’.32. b. B3.0";

if (none of celly,cells is in T)
then output “failure”;
if (“confid’.c” isin 1)
then output “failure”;
store celll,celly in T;

- /A
store “confid’.c’” in T

Approved for Public Release; Distribution Unlimited.
169

For a transition rule of the form w : (¢,) — (r,0, R) at the end of the tape:

Fo i |
receive celly, cells, cells, celly, cells;

receive cell, celly, celly, cellly, celly, cellg;

parse celly as o.01. by. B2.07;
parse celly as o.02. ba. B33.07;
parse cells as 0.83. “q”. B4.0';
parse celly as 0.84. “7. B5.07;

parse cells as 0.05. “end”. (B¢.0";

parse cell] as o’.31. bi. B2.0";
parse celly as o'.32. ba. B3.0";
arse celly as o' .B3. “zero”. B4.0”;
P 3)
arse celly as o' .B4. “r’. B5.0";
P 4)
arse cellt as o' .B5. “ 7. Bg.0";
p 5 ;

parse celli as o'.3s. “end’. B7.0";

if (none of celly, cella, cells, cella, cells is in T)
then output “failure”;

if (cell} is not in T)
then output “failure”;

if (“cellid”.B7 is in T)
then output “failure”;

store celll, celll, cell), cells, cellg in T;

Persistence of other bits.

]_—persist : [
receive celly, cells;

receive cell], cellh;

parse celly as 0.01. by. B2.0';

parse celly as 0.02. ba. (B3.07;

parse cell] as o’.B1. b1. B2.0";

parse celly as o’.B2. ba. B3.0";

if (none of celly,cellz is in T)
then output “failure”;

if (cell} is not in 7)
then output “failure”;

store cell] in T;

Approved for Public Release; Distribution Unlimited.
170

Detecting Machine Acceptance. For a transition rule p : (¢,0) — (qaccept, 1, R), we have the subroutine:

Fpi |
receive celly, cella, cells, celly, cells;

receive cell, celly, cellly, celll, cellf;

parse cell] as o.01. b1. B2.07;
parse celly as o.02. ba. B3.07;
parse cellz as 0.83. “q". B4.0;
parse celly as 0.84. “zero”. Bs.0';

parse cells as 0.85. by. B6.0';

parse cell| as o'.31. bi. B2.0";

parse cellé as o.fB2. ba. B3.0";

parse celli as o’.B3. “one”. B4.0";
parse celly as o'.34. “qaccept’. B5.0";

parse cell; as o' .B35. ba. B.0";

if (none of celly, cells, cells, celly, cells is in T)
then output “failure”;

if (cell} is not in 7)
then output “failure”;

store celll, cellly, cell), cellf in T;

store “AcceptanceStateReached.” .o’ in T;

Similarly for a transition rule p: (¢,0) — (r,1, L).

Subroutine to check consistency at the end:

Fsuccess : [
receive celly, cells;

receive celly, celll;

parse celly as 0.81. “ 7. B2.0';

parse celly as 0.02. “end”. B33.07;

parse cell) as o'.51. “7. B2.0";

parse celll as o'.B2. “end”. B3.0";

if (nome of celly,cells is in 7)
then output “failure”;
if (cell} is not in 7)

then output “failure”;

if (“AcceptanceStateReached” .o’ is in T)

then output “success”;

Approved for Public Release; Distribution Unlimited.
171

10.7 Summary and Outlook

Security primitives and protocols are deceptively concise. It is not too hard for someone with
a decent knowledge of computing technology to understand and implement these systems.
Yet a very specialized level of expertise is requisite for developing these systems and reasoning
why they meet a specific security goal. In the last few decades, the field of cryptography
has come a long way in understanding the principals and laying down the framework of
specifying security goals and proof methods on a firm formal footing. As a consequence of
a vast body of work in this field, there is a compact set of techniques that have emerged as
the fundamental building blocks of these systems and the reasoning principles behind their
security.

Concomitant to the maturity of this field, a substantial research community has grown
around attempting to consolidate and automate these reasoning principles so that that the
manual need to provide tedious and cumbersome proofs is removed. Importantly, automation
provides greater assurance since all possible corner cases are also considered eliminating
sometimes subtle errors. Efforts in this direction has led to some very exciting research
bringing the attention of experts in such diverse fields of computer science as logic and
programming languages to cryptographic systems.

In this work, we took a purely algebraic approach to the problem. Although, there have
been many pieces of work in formal methods for cryptographic protocols [AR00, CH, MWO04,
DDMROT7b], this to our knowledege is a novel approach to theorem proving of security proto-
cols. The central feature of our approach is that we consider operations at the highest level
of granularity compared to all earlier approaches. Most earlier approaches treat encryptions,
signatures etc as basic primitives - whereas in our approach we can look at these operations
at various level of abstractions.

So far, the bulk of our work has been to understand the fundamental limits of the
concept of simulatability as applied to algebraic systems. At the outset of this project
we formally defined the notion of simulatability for very simple pieces of code without any
loop or arithmetic operation. The surprising observation, as we saw in Section 10.6, was that
even with these simple straight line programs, simulatability is undecidable if unbounded
storage is allowed.

The next question we asked was suppose we make the functionalities stateless, but support
arithmetic operations, can we have decision procedures for simulatability in these scenarios?
Motivated by cryptographic protocols such as commitment schemes, it seemed that an attrac-
tive choice would be to consider bitstring objects with support for bitwise xor. Technically,
the objects would be from finite fields of characteric two with support for the addition oper-
ation. Without any conditional operator, the problem is easily seen to be straightforward to
solve. At this point these primitives can model some of the simplest cryptographic protocols
such as the one-time pad encryption.

Surprisingly, introduction of conditional operators led to a whole new level of complex-
ity. In Section 10.4, we defined Pseudo-Linear functions, which are functions computed by
branching programs over the field elements. The conditionals in such programs are built

Approved for Public Release; Distribution Unlimited.
172

from equality constraints over linear expressions, closed under negation and conjunction.
We found that these functions are complete in a very elegant sense: if a given pseudo-linear
function is an arbitrary function of a given set of pseudolinear functions, then it is in fact
a pseudo-linear function of the given set of functions! The implication of this theorem for a
UC system described in terms of pseudo-linear functions is very direct: if there is a simulator
which proves UC security of the system, then there is a simulator independent of the security
parameter; otherwise the system is not UC secure. In addition, the structure of these special
simulators make them straightforwardly enumerable, thus reducing the problem of finding a
security proof to a search problem.

Some of the simplest cryptographic security notions require the generation of random
numbers. Unguessability of bitstrings generated randomly from large distributions is a basic
building block of almost all non-trivial cryptographic primitives. In essence, unguessability
is the most primitive and simplest security property from which all higher level properties are
boot-strapped. We added random number generation to our set of operations and observed
a crucial property in the context of pseudo-linear functions: any randomized pseudo-linear
function is statistically indistinguishable from a randomized pseudo-linear function generat-
ing just one random number - a class of functions we call simple randomized pseudo-linear
(SRPL) functions. Our techniques for pseudo-linear functions extended naturally to cover
the richer set of SRPL functions and hence we had a decision procedure for the richer lan-
guage.

So far we had not modeled the interactivity of the ideal functionalities in the sense of a
distributed computation. This was the next hurdle we attempted to cross. In this setting
it is possible for the simulator to supply additional parameters to the ideal functionilities
of its own choosing. The functions computed depend on the parameters supplied by the
environment as well as the simulator. There is a fair bit of additional complexity that arises
in this setting. The simulator can iteratively compute any function of the outputs it has
observed so far and supply back the result to any functionality of its choice. To model
this, we defined iterated SRPL functions. The core insight in the space of these functions
was that the action of any probabilistic poly-time algorithm computing these iterates is
equivalent to a specific class of iterates which are finite in number. Specifically, these special
iterates can be automatically enumerated and the order of their set is again independent of
the security parameter! This independence is peculiar in this setting since we demonstrated
that it is essential to restrict the simulator to be probalistic poly-time bounded in the security
parameter, otherwise security may not hold. However, if there does exist such a simulator,
then there exists a simulator which is independent of the security parameter.

Proceeding even further, we added bounded persistent states across call of functionalities.
This is an essential step since the definition of ideal functionalities of many cryptographic
primitives require to carry state from invocation to invocation. This state may be in the
form of boolean values representing phase transitions internal to a protocol or records of
values generated or patterns that may be required to match. A case in point is the ideal
functionality for signatures which records each signed message in a lookup table. A wvalid
signature is one which has an entry in the table. As we see in Section 10.6, table lookups,

Approved for Public Release; Distribution Unlimited.
173

if unrestricted, can make the problem undecidable. However, cryptographic protocols use
signatures and public-key encryption primitives in standard ways. This encouraged us to
look for restrictions that enable decision procedures, while covering standard usage. In
view of this we first constructed stateful iterated compositions of randomized pseudo-linear
functionalities. The key observation in this space was that there is only a finite number of
equivalence classes of these iterates modulo permutation of uniformly random quantities and
hence represent the same randomized algorithm. Again this observation led to an automatic
enumeration of possible simulators and thus a decision procedure. At this point many
complex primitives can be expressed in the operators allowed, such as password-based key
exchange protocols, commitment schemes and so on.

Cryptography aside, there has been a few emerging efforts to model systems security in
the UC framework, such as our work on file systems and hypervisors. In contrast to cryp-
tographic protocols, which usually have a fixed number of interactions per session, systems
can have unbounded number of interactions. Our work so far allows an arbitrary number of
interactions in the ideal side, but the real side is restricted to be monolithic. Note that we
can still hope to prove security in the bounded and non-adaptive setting by simple enumera-
tion of possible interaction sequences. Lifting the restriction seems to be a difficult problem
in the space of the rich set of operators that we have outlined. However, systems security
primitives are built mostly out of access control. So decision procedures may be possible in
a weakened language setting.

We have charted a portion of the boundary between what is provably undecidable and
provably decidable. The problem is rich in possibilities of further exploration. The hope
is that once the number of operations covered are rich enough, we will be able to express
and automatically analyze an unprecedented spectrum of protocols and specifications. Some
primitives that seem to be on the horizon are hash proof systems, zero knowledge proof
systems, pseudo-random functions and so on. Although we have come a long way in adding
more and more operators, we still find that the existence of a simulator implies existence
of a simulator independent of the security parameter. This is a tantalizing prospect offered
by the gap between the decidable and the undecidable: where the shift occurs seems like a
fundamental question.

Approved for Public Release; Distribution Unlimited.
174

11 Conclusions

We believe that the results obtained in the Montage project are convincing evidence that it
is feasible to design software systems in a principled manner with the UC Framework, which
can guarantee that the resulting systems are secure and will remain so when composed with
other systems. We have successfully shown examples from very diverse areas where the UC
framework can be applied outside its traditional domain of cryptographic protocols. The
results obtained in the Montage project have had impact on many open source packages.
Further, a number of papers and publications have resulted from the Montage effort

11.1 Key Areas of Application

As we have documented in this report, we have been successful in applying the UC method-
ology to a diverse set of applications. Specifically, we have had success in the following
areas

e Safe subsets of the POSIX filesystem interface In Sections 5 and 6 we described
the application of the UC Framework to the modeling of safe subsets of the POSIX
filesystem. We were successful in defining a safe subset which is designed to prevent a
large class of attacks. We described an implementation of a safe filesystem primitive
and its evaluation on practical systems. Our evaluation shows that our primitive can
be a drop-in replacement for the usual primitives and the evaluation also showed that
several open source packages have latent vulnerabilities all of which can be prevented
by using our primitive.

e Secure Virtualization primitives The second application of the UC Framework
is to the design of secure virtualization primitive is described in Section 7. We used
the UC Framework to model the notion of strong isolation of tenant workloads and
we identified specific conditions which are sufficient to guarantee strong isolation. We
have also investigated how practical hypervisors can achieve these sufficient conditions.

e Web Security Protocols Another area where we have applied the UC Framework is
to formally model web security protocols. Specifically, we have investigated the security
of the OAuth web security protocol. We have shown a formal proof of correctness of
this protocol and also identified a number of practical recommendations on how this
protocol should be implemented. This work is described in Section 9.

e Proof Automation We initiated a very ambitious effort to understand how the proofs
of equivalence required to apply the UC Framework can be automated. We demon-
strated a number of positive as well as negative results in this effort. While it is
easy to see that the general problem is undecidable, we have shown surprisingly that
several very restricted models are also undecidable. On the positive side, we have
demonstrated several restricted cases, including several which can model real crypto-

Approved for Public Release; Distribution Unlimited.
175

graphic primitives, where the proofs can be automated. These results are described in
Section 10.

11.2 Papers and Publications

The following are some of the papers and publications that arise from the Montage project

Suresh Chari, Shai Halevi, Wietse Venema. Where Do You Want to Go Today? FEs-
calating Privileges by Pathname Manipulation. Proceedings of the Network and Dis-
tributed systems security 2010.

Ran Canetti, Suresh Chari, Shai Halevi, Birgit Pfitzmann, Arnab Roy, Michael Steiner,
Wietse Venema. Composable Security Analysis of OS Services Proceedings of the
Applied Cryptography and Network Security 2011.

Charanjit Jutla and Arnab Roy. Relatively-Sound NIZKs and Password-Based Key-
Exchange. Proceedings of Public Key Cryptography (PKC) 2012.

Suresh Chari, Charanjit S. Jutla, Arnab Roy: Universally Composable Security Anal-
ysis of OAuth v2.0 TACR Cryptology ePrint Archive 2011: 526 (2011).

Charanjit S. Jutla, Arnab Roy: A Completeness Theorem for Pseudo-Linear Functions
with Applications to UC' Security Electronic Colloquium on Computational Complexity
(ECCC) 17: 92 (2010)

Suresh Chari; Charanjit Jutla. Universally Composable Web Security Protocols for
Delegation. IBM Technical Research Report RC24856.

Charanjit Jutla, Arnab Roy: Decision Procedures for Simulatability. To appear in
Proceedings of ESORICS 2012.

Arnab Roy, Arvind Seshadri, Suresh Chari, Mihai Christodorescu, Dimitrios Pen-
darakis and Wietse Venema. noLeak Provable Isolation for Commodity Virtualization
Platforms In Preparation.

Arvind Seshadri, Arnab Roy, Ning Qu, Adrian Perrig. Qutpost: Creating Secure Exe-
cution Environments Without Secure Hardware. In Preparation.

11.3 Contributions to Open Source

Our evaluation of the safe-open filesystem primitive on multiple UNIX systems revealed a
number of vulnerabilities in multiple open source software packages. We have transferred
our findings to the following software packages

Approved for Public Release; Distribution Unlimited.
176

e A latent privilege escalation vulnerability was reported for the Common UNIX Printing
System (CUPS) as bug number 3510 (http://www.cups.org/str.php?L3510).

Here, the privileged CUPS server saves state and overwrites files as root in a directory
/var/cache/cups that is writable by unprivileged helper processes. If an unprivileged
CUPS helper program has a vulnerability, then an attacker could escalate privilege by
replacing a CUPS state file by a symlink to a sensitive file, and causing symlink target
to be overwritten by a root-privileged process.

The CUPS maintainers created a fix that uses a variant of our ”safe open” function to
protect CUPS programs against symlink or hardlink attacks, and that will be merged
into the next release. This technology transfer is completed.

e A latent privilege escalation vulnerability was reported for Fedora Core 12 and ear-
lier releases as bug number 581884 (https://bugzilla.redhat.com/show_bug.cgi?
1d=581884).

Here, the /var/lock directory is writable by unprivileged processes with the ”lock”
group ID, for example, processes that execute the set-gid /usr/sbin/lockdev com-
mand. If this program has a vulnerability, then an attacker could replace the directory
/var/lock/subsys by a symlink to a directory with critical files, such as /etc. With
this, the /etc/init.d/killall script would remove many files under /etc as root,
when the system shuts down or reboots.

Fixing this requires changes to the way that scripts in /etc/init.d maintain their
state files.

Also our investigation of the STARTTLS protocol composition bug resulted in the dis-
covery of the same vulnerability in multiple software packages.

Approved for Public Release; Distribution Unlimited.
177

12 References

[* *08]

[AARRO2]

[AcKKS07]

[AHFG10]

[AROO]

[ARJS07]

[BBF+11]

[BD96]

[Bel05]

[Bib77]

[Bis05]

kKK Linux-VServer, 2008.

Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The EM Side-Channel(s). In Burton S. Kaliski Jr., Cetin K. Koc, and Christof
Paar, editors, Proc. 4th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES’02), volume 2523 of Lecture Notes in Computer
Science, pages 29-45, 2002.

Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Predicting secret keys
via branch prediction. In Masayuki Abe, editor, Proc. (CT-RSA’07), volume
4377 of Lecture Notes in Computer Science, pages 225-242, 2007.

Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gummadi. Determi-
nating timing channels in compute clouds. In Proc. CCSW, pages 103-108,
New York, NY, USA, 2010. ACM.

Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography
(the computational soundness of formal encryption). In IFIP International
Conference on Theoretical Computer Science (IFIP TCS2000), Lecture Notes
in Computer Science, Sendai, Japan, August 2000. Springer Verlag.

Nidhi Aggarwal, Parthasarathy Ranganathan, Norman P. Jouppi, and James E.
Smith. Isolation in commodity multicore processors. IEEE Computer, 40(6):49—
59, 2007.

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Sergio Maffeis. Refinement types for secure implementations. ACM Trans.
Program. Lang. Syst., 33(2), 2011.

Matt Bishop and Michael Dilger. Checking for race conditions in file accesses.
Computing Systems, 2(2):131-152, 1996.

Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proc.
USENIX ATC, pages 41-46, Berkeley, CA, USA, 2005. USENIX Association.

Kenneth Biba. Integrity considerations for secure computer systems. Report
TR-3153, MITRE, 1977.

Matt Bishop. Race conditions, files, and security flaws; or the tortoise and the
hare redux. Report CSE-95-8, Univ. of California at David, 1995.

Approved for Public Release; Distribution Unlimited.
178

[BISWO5]

[BM93]

[BP02]

[BP03]

[BP04]

[BPROO]

[BPWO7]

[Can]

[Can01]

[Can06]

[CF01]

[CG10]

[CGJ09]

Nikita Borisov, Robert Johnson, Naveen Sastry, and David Wagner. Fixing
races for fun and profit: how to abuse atime. In Proc. 1/th USENIX Security
Symposium, pages 303-314, 2005.

Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange:
A password-based protocol secure against dictionary attacks and password file
compromise. In ACM Conference on Computer and Communications Security,
pages 244-250, 1993.

Michael Backes and Birgit Pfitzmann. Computational probabilistic non-
interference. In Proc. ESORICS, pages 1-23, 2002.

Michael Backes and Birgit Pfitzmann. Intransitive non-interference for crypto-
graphic purposes. In Proc. Qakland Security and Privacy, pages 140—, 2003.

Michael Backes and Birgit Pfitzmann. Computational probabilistic noninter-
ference. 3(1):42-60, 2004.

Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In FUROCRYPT, pages 139-155,
2000.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive simulata-
bility (rsim) framework for asynchronous systems. Inf. Comput., 205(12):1685-
1720, 2007.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. A revised full version (2005) is available at TACR Eprint
Archive, http://eprint.iacr.org/2000/067/ and at the ECCC archive,
http://eccc.uni-trier.de/eccc-reports/2001/TR01-016/.

Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136145, 2001.

Ran Canetti. Security and composition of cryptographic protocols: A tutorial.
SIGACT News, 37(3 & 4), 2006.

Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, pages 19-40, 2001.

Ran Canetti and Sebastian Gajek. Universally composable symbolic analy-
sis of diffie-hellman based key exchange. Cryptology ePrint Archive, Report
2010/303, 2010. http://eprint.iacr.org/.

Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting unix file-system races via
algorithmic complexity attacks. In IEEE Symposium on Security and Privacy,
pages 27-41, 2009.

Approved for Public Release; Distribution Unlimited.
179

[CH]

[CHK*05]

[Cri03)]

[CWD02]

[cyrll]

[DA99)

[DDMRO7a)

[DDMRO7b]

[DenT76]

[Denll]

[DFGKO9]

[DHO4]

[Dij75]

[Dro97]

[Duf09)

R. Canetti and J. Herzog. Universally composable symbolic analysis of cryp-
tographic protocols (the case of encryption-based mutual authentication and
key-exchange). Extended version at http://eprint.iacr.org/2004/334.

Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D.
MacKenzie. Universally composable password-based key exchange. pages 404—
421, 2005.

M. Crispin. Internet Message Access Protocol - Version 4revl. RFC 3501,
Internet Engineering Task Force, March 2003.

Hao Chen, David Wagner, and Drew Dean. Setuid demystified. In USENIX
Security Symposium, pages 171-190, 2002.

Bug 3424 - STARTTLS plaintext command injection vulnerability (Cyrus).
http://bugzilla.cyrusimap.org/show_bug.cgi?id=3424, March 2011.

T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, Internet
Engineering Task Force, January 1999.

A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic
(PCL). In FElectronic Notes in Theoretical Computer Science, 2007.

Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol com-
position logic (pcl). Electr. Notes Theor. Comput. Sci., 172:311-358, 2007.

Dorothy E. Denning. A lattice model of secure information flow. Comm. ACM,
19(5):236-243, 1976.

Frank Denis. Pure-FTPd 1.0.30 has been released. http://www.pureftpd.
org/project/pure-ftpd/news, March 2011.

Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kirli Kaynar. A
logic of secure systems and its application to trusted computing. pages 221—
236, 2009.

D. Dean and A. J. Hu. Fixing races for fun and profit: how to use access(2).
In Proc. 13th USENIX Security Symposium, pages 195-206, 2004.

Edsger Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18:453-457, Winter 1975.

R. Droms. Dynamic host configuration protocol. RFC 1541, Internet Engineer-
ing Task Force, March 1997.

Loic Duflot. Getting into the SMRAM: SMM Reloaded. http://cansecwest.
com/csw09/csw09-duflot.pdf, 2009.

Approved for Public Release; Distribution Unlimited.
180

[Fea06]

[Fer(7]
[FHO5]

[FWF09]

[GAO3]

[Gar03]

[GAWFO7]

[GMS2]

[GPS05]

[Gre]

[Gut96]

[HL10]

[Hof02]

[HSH*08]

[IEE0S]

C. Feather. Network News Transfer Protocol (NNTP). RFC 3977, Internet
Engineering Task Force, October 2006.

Peter Ferrie. Attacks on virtual machine emulators, 2007.

P. Ford-Hutchinson. Securing FTP with TLS. RFC 4217, Internet Engineering
Task Force, October 2005.

Leo Freitas, Jim Woodcock, and Zheng Fu. Posix file store in z/eves: An exper-
iment in the verified software repository. Science of Computer Programming,
74(4):238-257, February 2009.

Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to
attack a virtual machine. In Proc. QOakland Security and Privacy, pages 154—
165, 2003.

Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition
based security tools. In NDSS, 2003.

Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compat-
ibility is Not Transparency: VMM Detection Myths and Realities. In Proc.
11th Workshop on Hot Topics in Operating Systems (HotOS-XI), May 2007.

Joseph A. Goguen and José Meseguer. Security Policies and Security Models.
In Proc. Oakland Security and Privacy, pages 11-20, 1982.

Thomas Grogs), Birgit Pfitzmann, and Ahmad-Reza Sadeghi. Browser model
for security analysis of browser-based protocols. In ESORICS, pages 489-508,
2005.

Greenhills Software, Inc. Integrity real-time operating system.

Peter Gutmann. Secure deletion of data from magnetic and solid-state memory.
In Proc. USENIX Security, pages 77-89, 1996.

E. Hammer-Lahav, Ed. The OAuth 1.0 protocol.
http://tools.ietf.org/html/rfc5849, 2010.

P. Hoffman. SMTP Service Extension for Secure SMTP over Transport Layer
Security. RFC 3207, Internet Engineering Task Force, February 2002.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum,
and Edward W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Proc. USENIX Security, pages 45-60, 2008.

IEEE Std. 1003.1. The open group base spec.
http://www.opengroup.org/onlinepubs/9699919799/, 2008.

Approved for Public Release; Distribution Unlimited.
181

[Imall]

[JHOT]

[JPRZ04]

[KASZ08]

[KEH*09]

[Kem02]

[ker11]

[KJJ99]

[K1e08]

[KLP6S)]

[Koh79]

[Kép07]

[KR04]

K.S]

Release notes for imail server v11.5. http://docs.ipswitch.com/ Messaging/
IMailServer/v11.5/ReleaseNotes/index.htm, 2011.

Rajeev Joshi and Gerard J. Holzmann. A mini challenge: build a verifiable
filesystem. Formal Asp. Comput., 19(2):269-272, 2007.

C. Jutla, A. Patthak, A. Rudra, and D. Zuckerman. Testing low-degree poly-
nomials over prime fields. In FOCS, 2004.

Jingfei Kong, Onur Aciigmez, Jean-Pierre Seifert, and Huiyang Zhou. Decon-
structing new cache designs for thwarting software cache-based side channel
attacks. In Trent Jaeger, editor, Proc. CSAW, pages 25-34. ACM, October
2008.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal
verification of an os kernel. In SOSP, pages 207-220, 2009.

Richard A. Kemmerer. A practical approach to identifying storage and timing
channels: Twenty years later. In Proc. ACSAC, pages 109-118, 2002.

Kerio Technologies Information for VU#555316 (US-CERT). http://www.kb.
cert.org/vuls/id/MAPG-8D9M4P, March 2011.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Proc. CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388-397. Springer, August 1999.

J. Klensin. Simple Mail Transfer Protocol. RFC 5321, Internet Engineering
Task Force, October 2008.

T. Kasami, S. Lin, and W. W. Peterson. New Generalization of the Reed-
Muller Codes Part I: Primitive Codes. [FEEFE Transactions on Information
Theory, 1T-14(2):189-199, March 1968.

Zvi Kohavi. Switching and Finite Automata Theory. McGraw-Hill Inc, 2 edi-
tion, March 1979.

Boris Kopf. Formal Approaches to Countering Side-Channel Attacks. PhD
thesis, ETH Ziirich, 2007.

T. Kaufman and D. Ron. Testing polynomials over general fields. In FOCS,
2004.

K.Seidler. The xampp software. http://www.apachefriends.org/.

Approved for Public Release; Distribution Unlimited.
182

[KSRL10] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. NoHype: vir-
tualized cloud infrastructure without the virtualization. In Proc. 37th Annual
International Symposium on Computer Architecture (ISCA’10), pages 350361,

2010.

[Kuh02] Markus G. Kuhn. Optical time-domain eavesdropping risks of CRT displays.
In Proc. Oakland Security and Privacy, pages 3—-18. IEEE Computer Society,
2002.

[KWO1] Paul A. Karger and J. C. Wray. Storage channels in disk arm optimization. In

Proc. Oakland Security and Privacy, pages 52-61, 1991.

[KW00] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipo-
tent root. In Proc. 2nd International SANE Conference, 2000.

[KZB*91] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and
Clifford E. Kahn. A Retrospective on the VAX VMM Security Kernel. IEEE
Trans. Softw. Eng., 17:1147-1165, November 1991.

[Lam73| Butler W. Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613-615, 1973.

[Lip75] Steven B. Lipner. A comment on the confinement problem. In Proc. SOSP,
pages 192-196, November 1975.

[LTO*11] Xun Li, Mohit Tiwari, Jason Oberg, Vineeth Kashyap, Frederic T. Chong, Tim-
othy Sherwood, and Ben Hardekopf. Caisson: a hardware description language
for secure information flow. In Mary W. Hall and David A. Padua, editors,
Proc. PLDI, pages 109-120. ACM, June 2011.

[Mai] [8lgm]-advisory-5.unix.mail.24-jan-1992. http://www.8lgm.org/advisories/[8lgm]|-
Advisory-5.UNIX.mail.24-Jan-1992.html.

[Man03] Heiko Mantel. A uniform framework for the formal specification and verification
of information flow security. PhD thesis, Universitat des Saarlandes, 2003.

[McC87] Daryl McCullough. Specifications for multi-level security and a hook-up prop-
erty. In Proc. Oakland Security and Privacy, pages 161-166. IEEE Computer
Society, 1987.

[McL94| John McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proc. Oakland Security and Privacy, pages
79-93, 1994.

[McL96] John McLean. A general theory of composition for a class of “possibilistic”

properties. IEEE Trans. Software Eng., 22(1):53-67, 1996.

Approved for Public Release; Distribution Unlimited.
183

[Mi108]

[MKO7]

[Moc87]

IMR96]

[MVNOG]

IMW04]

[Nat95]

[net]

[Neu]

[New99)

INFO3]

[nvd]

[ope02]

[ope0§]

[Orallal

[Orallb]

Ken Milberg. Workload Partitioning (WPAR) in AIX 6.1, 2008.

David Mazieres and M. Frans Kaashoek. Secure applications need flexible
operating systems. In Workshop on Hot Topics in Operating Systems, pages
56-61, 1997.

P. Mockapetris. Domain names - implementation and specification. RFC 1035,
Internet Engineering Task Force, November 1987.

J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939, Internet
Engineering Task Force, May 1996.

K. Murchison, J. Vinocur, and C. Newman. Using Transport Layer Security

(TLS) with Network News Transfer Protocol (NNTP). RFC 4642, Internet
Engineering Task Force, October 2006.

D. Micciancio and B. Warinschi. Completeness theorems for the abadi-rogaway
logic of encrypted expressions. Journal of Computer Security, 12(1):99-129,
2004.

National Computer Security Center. Final evaluation report of Gemini Com-
puters Incorporated: Gemini Trusted Network Processor Release 1.01. NCSC-
FER-94/34, 1995.

The netqmail website. http://www.netqmail.org.

Peter Neumann. Principled assuredly trustworthy composable architectures.
http://www.csl.sri.com/users/neumann/chats.html.

C. Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595, Internet
Engineering Task Force, June 1999.

Peter G. Neumann and Richard J. Feiertag. Psos revisited. In ACSAC, pages
208-216, 2003.

National vulnerability database. http://nvd.nist.gov/.

Common Vulnerabilities and exposures CVE-2001-0529. http://cve.mitre.
org/cgi-bin/cvename. cgi?name=CVE-2001-0529, 2002.

The open group base specifications issue 7; ieee std 1003.1-2008. http://www.
opengroup.org/, 2008.

Oracle critical patch update advisory - april 2011. http://www.oracle.com/
technetwork/topics/security/cpuapr2011-301950.html, April 2011.

Oracle Corporation. Java, 2011.

Approved for Public Release; Distribution Unlimited.
184

[Orm07]

[PCI06]
[Per05]

[Plu82]

[PR85]

[PT04]

[PWO0]

[qmall]

[qps11]

[res08]

[RNSE09]

[RTSS09)

[Rus82]

Tavis Ormandy. An empirical study into the security exposure to hosts of
hostile virtualized environments. In CanSec West Applied Security Conference,
Vancouver, BC, Canada, April 2007.

PCI SIG. PCI Ezpress Access Control Services (ACS), Oct 2006.

Colin Percival. Cache missing for fun and profit. In BSDCan, Ottawa, ON,
Canada, 2005.

David C. Plummer. An ethernet address resolution protocol. REFC 826, Internet
Engineering Task Force, November 1982.

J. Postel and J. Reynolds. File transfer protocol (FTP). RFC 959, Internet
Engineering Task Force, October 1985.

Daniel Price and Andrew Tucker. Solaris Zones: Operating system support for
consolidating commercial workloads. In Proc. LISA, pages 241-254. USENIX,
November 2004.

Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation
of secure reactive systems. In Sushil Jajodia, editor, Proceedings of the 7th
ACM Conference on Computer and Communications Security, pages 245-254,
Athens, Greece, November 2000. ACM Press.

qmail-tls patch for VU#555316. http://inoa.net/qmail-tls/vub555316.
patch, March 2011.

[smtpd/qpsmtpd] 520024: Fix STARTTLS vulnerability for async. http://
www.nntp.perl.org/group/perl.qpsmtpd.dev/2011/06/msg391.html,
2011.

initscripts arbitrary file deletion vulnerability. cve-2008-3524. http://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-3524, 2008.

Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul England. Resource
management for isolation enhanced cloud services. In Proc. CCSW, pages 77—
84. ACM, 2009.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: exploring information leakage in third-party compute
clouds. In Proc. ACM CCS, pages 199-212. ACM, 2009.

John M. Rushby. Proof of separability: A verification technique for a class of
a security kernels. In Proc. 5th Colloguium on International Symposium on
Programming, pages 352-367. Springer-Verlag, 1982.

Approved for Public Release; Distribution Unlimited.
185

[SM07]

[s0l08]

[spal2]

[ST04]

[THWS08a)

[THWS08b)]

[TOS10]

[TSWOS]

[TWM*09)

[TWV+08]

[Ven]
[Venl1]

M. Seaborn. Plash: tools for practical least privilege. http://plash.beasts.
org/.

Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-based secure vir-
tualization architecture. In Proc. Eurosys, EuroSys '10, pages 209-222. ACM,
April 2010.

R. Siemborski and A. Melnikov. SMTP Service Extension for Authentication.
RFC 4954, Internet Engineering Task Force, July 2007.

Security Vulnerability in inetd(1M) Daemon When Debug Logging is
Enabled. CVE-2008-1684. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2008-1684, 2008.

Spamdyke version 4.2.1 changelog. http://www.spamdyke.org/
documentation/Changelog.txt, January 2012.

Adi Shamir and Eran Tromer. Acoustic cryptanalysis: on nosy people and
noisy machines. In Rump session of Euurocrypt04. 2004.

Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva. Portably pre-
venting file race attacks with user-mode path resolution. Report RC24572, IBM
Research, 2008.

Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva. Portably solv-
ing file tocttou races with hardness amplification. In Proceedings of USENIX
Conference on File and Storage Technologies (FAST), pages 189-206, 2008.

Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on
AES, and countermeasures. Journal of Cryptology, 23:37-71, January 2010.

D. Tsafrir, D. Da Silva, and D. Wagner. The murky issue of changing process
identity: revising “setuid demystified”. USENIX:login, 33(3):55-66, 2008.

Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Fred-
eric T. Chong, and Timothy Sherwood. Complete information flow tracking
from the gates up. In Proc. ASPLOS, pages 109-120. ACM, 2009.

Hendrik Tews, Tjark Weber, Marcus Volp, Erik Poll, Marko van Eekelen, and
Peter van Rossum. Nova micro—hypervisor verification. Technical Report ICIS—
RO0O8012, Radboud Universteit Nijmegen, May 2008.

Wietse Venema. The postfix mail transfer agent. http://www.postfix.org.

Wietse Venema. Plaintext command injection in multiple implementations of
STARTTLS (CVE-2011-04. http://www.postfix.org/CVE-2011-0411.html,
March 2011.

Approved for Public Release; Distribution Unlimited.
186

[wat11]

[WL06]

[WRO09]

[Wra91]

[WSG02

[xte93]

[ZBA10]

[ZJOR11]

Release Notes for WatchGuard XCS v9.1 TLS Hotfix. http://www.
watchguard. com/support/release-notes/xcs/9/en-US/EN_ReleaseNotes_
XCS_9_1_1/EN ReleaseNotes WG _XCS_9_1 TLS Hotfix.pdf, April 2011.

Zhenghong Wang and Ruby B. Lee. Covert and side channels due to proces-
sor architecture. In Proc. ACSAC, pages 473-482. IEEE Computer Society,
December 2006.

Rafal Wojtczuk and Joanna Rutkowska. Attacking SMM Memory via In-
tel(R) CPU Cache Poisoning. http://invisiblethingslab. com/resources/
misc09/smm_cache_fun.pdf, 2009.

J. C. Wray. An analysis of covert timing channels. In Proc. Oakland Security
and Privacy, pages 2-7. IEEE Computer Society, 1991.

Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and per-
formance in the Denali isolation kernel. SIGOPS Operating Systems Review,
36:195-209, December 2002. special issue for Proc. OSDI.

CERT Coordination Center. CERT Advisory CA-1993-17. http://www.cert.
org/advisories/CA-1993-17.html, 1993.

Sebastian Zander, Philip Branch, and Grenville Armitage. Estimating the ca-
pacity of temperature-based covert channels. Technical Report 100726A, Centre
for Advanced Internet Architectures, Swinburne University of Technology, July
2010.

Yingian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. HomeAlone:
Co-residency detection in the cloud via side-channel analysis. In Proc. Oakland
Security and Privacy, pages 313-328. IEEE Computer Society, 2011.

Approved for Public Release; Distribution Unlimited.
187

List of Symbols, Abbreviations and Acronyms

API Application programming interface

ARP Address Resolution Protocol

CA Certificate Authority

CPU Central Processing Unit

CUPS Common Unix Print Services

DFSRA Deterministic finite-state resource arbiter
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System

FIFO First-in First-out policy

FTP File Transfer Protocol

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol
IOMMU Input/output memory management unit
ISA Instruction Set Architecture

ITM Probabilistic Interactive Turing Machine
LD_PRELOAD Environment variable for dynamic linking
MTA Mail Transfer Agent

NIZK Non-Interactive Zero Knowledge

NNTP Network News Transfer Protocol

OS Operating System

PAK Password Authenticated Key Exchange

PE Processing Element

PKE Public Key Encryption

PKI Public Key Infrastructure

POP Post Office Protocol

Approved for Public Release; Distribution Unlimited.
188

POSIX Portable Operating System Interface
PPT Probabilistic Polynomial time

PRA Probabilistic Resource Arbiter

SASL Simple Authentication and Security Layer
SMM System Management Mode

SMTP Simple Mail Transfer Protocol

SRPL Simplified Randomized Pseudo-Linear
SSL Secure Sockets Layer

TDM Time-division multiplexing

TLS Transport Layer Security Protocol
TOCTTOU Time-of-check to time-of-use

TVD Trusted Virtual Domain

UC Universal Composability

UCConeTime Commitment Scheme

URI Uniform Resource Identifier

VM Virtual Machine

XAMPP Cross-platform, Apache, MySQL, Perl and PHP
A Adversary in the real-world

B Set of Roles

C Interface call

EPSELIN Elementary pseudo-linear polynomials
F Ideal functionality

fName Absolute pathname of a file

F.,, Ideal Commitment Functionality

fi Pseudo-linear function

Fyre Ideal functionality for Public Key Encryption

Approved for Public Release; Distribution Unlimited.
189

Fy Finite field

Fy, Ideal functionality for Signature

Gpr pseudorandom generator derived from pk

1 Input alphabet

KGen Public Key Generation Algorithm

L Language describing an system in ideal or real world
L3®f Restricted Language to describe Ideal functionalities
L3&ifstate Regtricted Language to describe Ideal functionalities with state
Ly, Language for expressing functionalities where equivalnece is undecidable
M(P) Maninpulators of pathname P

msg Message exchanged between parties

O Output alphabet

P Pathname of file

= Party in a distributed protocol or system

P, Isolation Property

pk Public Key

p(Z) Multivariate polynomial

pw Password supplied in a protocol

Q(X) Set of basic pseudo-linear polynomials in variables X
REPSELIN Reduced elementary pseudo-linear polynomials
S Simulator in the ideal-world

sid Session 1D

SIMPF'S Idealized Filesystem Interface

simpfs POSIX implemetation of Idealized filesystem

t Time instant

U User id in a system

Approved for Public Release; Distribution Unlimited.
190

Environment the system runs in

Z
B Basis for a set of polynomials
L Indeterminate value

= There exists

Foaurms OAuth 2.0 Authorization Code Ideal Functionality
v For all

Frwke Password-Based Key Exchange Functionality

Fsc Secure Channel Ideal Functionality

Fsst, SSL Ideal Functionality

z Input Trace

™ Implementation of an ideal functionality

P Implementation of an ideal functionality

my M, Projection function of machine state to VM,

So Start State

¥ Finite set of states

o(t) Machine state at time ¢

Approved for Public Release; Distribution Unlimited.
191

	Summary
	Key Accomplishments

	Introduction
	The Universal Composability Framework
	Systems targeted by this methodology
	Automating Proofs of Equivalence

	Methods, Assumptions and Procedures
	Overview of the UC methodology
	Assumptions
	Procedures

	Results and Discussion
	Composable Analysis of Operating System Services
	Related Work
	Conventions for Software systems
	SimpFS: A Simple Idealized File-System
	A formal model of SimpFS

	Implementing SimpFS over POSIX
	Concepts and Properties of POSIX
	The safeDirOpen procedure
	Implementing the simpfs commands
	Consistency properties of the implementation
	Rationale and Discussion
	Privilege-escalation attacks on setgid programs
	An attack on open-then-read programs
	Our treatment of symbolic links
	Using the sticky bit

	Proof of Security
	Useful Concepts
	The Simulator
	Proof of correctness

	Summary

	Implementation of a safe Filesystem primitive and its analysis
	Related Work
	Names, Manipulators, and Safe-Open
	Names and Their Manipulators
	The Safe-Open Procedure

	Our Security Guarantee
	Using the Security Guarantee to Thwart Privilege Escalation
	Dynamic Permissions

	Implementing safe-open for POSIX Filesystems
	Race conditions
	Thread safety
	Read permissions on directories
	Opening files without side effects
	Implementing safe-create, safe-unlink, and other primitives

	Experimental validation
	Testing apparatus
	Measurements of UNIX systems
	Latent vulnerabilities
	Policy violations
	A web-server application
	Conclusions

	Variations and Extensions
	A more permissive safe-open
	An alternative safe-open using extended attributes
	Group permissions

	Relative pathnames
	User-level implementation
	Summary

	IsoVisor:Secure Virtualization
	Related Work
	Threat model
	Problem Statement
	Trust Assumptions
	Attacker Model
	Physical-channel exclusions

	Requirements for Isolation
	Isolation
	Platform Model
	Processing Element
	Interface Element
	Memory
	Global Clock

	Platform Interface for Virtual Machines
	Deriving Requirements for Isolation
	Interface Call Result
	Error Signals
	Interface Call Latency
	Serialization of Interface Calls

	Our Condition for Isolation

	Proof of Sufficiency
	Isolation in the UC Framework

	Formal Model of Conf Separation
	Deterministic Finite-State Models of Resource Arbiters
	Common Resource-Arbitration Policies
	Priority-based resource arbiter
	First-in first-out (FIFO) resource arbiter
	Time-division multiplexing (TDM) resource arbiter

	Conf Separation for Deterministic Finite-State Models
	Non-Interfering Resource Arbiters
	Probabilistic Models of Resource Arbiters
	Example of leakage-rate computation

	Formal Model of Loc Separation
	Static Partitions
	Operational Model of Processing Elements
	Requirements for Static Partitions

	Modification of Partitions

	Discussion
	Summary

	Composition Failures in Protocols
	Plaintext injection in multiple legacy protocol implementations
	Problem overview and impact
	The STARTTLS feature
	Demonstration of the problem for SMTP
	Switching world views

	Remediation
	Comparison with other vulnerabilities
	Summary

	Modeling of OAuth 2.0 Web Security Protocol
	Outline
	Security Analysis Synopsis
	The Secure Channel Ideal Functionality
	Conventions for Defining Ideal Functionalities

	The OAuth Ideal Functionality
	Implementation of Ideal Functionality Foauth*
	Summary

	Proof Automation
	Problem Statement
	Universal Composability
	Proof Automation Problem
	Finiteness Argument.
	Call Sequence Enumeration.
	Equivalence Checking.

	Motivating Example.

	Overview of Results
	Restriction to Language Classes
	Decision Procedures
	Pseudo-Linear Functions
	Example of Pseudo-Linear Functions
	A Basis for Pseudo-Linear Functions
	Interpolation Property for Pseudo-Linear Functions
	The Completeness Theorem for Pseudo-Linear Functions

	Iterated Composition of Pseudo-Linear Functions
	Example of Iterated Pseudo-Linear functions
	Theorem for Iterated Pseudo-Linear Functions
	Allowing a Few Constants

	Randomized Pseudo-Linear Functions
	Interpolation Property for SRPL Functions
	The Completeness Theorem for SRPL Functions

	Proof Automation in the Universally Composable model
	Extension with Persistent States and Uninterpreted Functions
	Key ideas for encryption and signatures.

	Example of Automation

	Undecidable cases
	Analysis
	Ideal Functionality for the Undecidable Language

	Summary and Outlook

	Conclusions
	Key Areas of Application
	Papers and Publications
	Contributions to Open Source

	References

